THE TWO MULTIPLICATIONS ON BU

J. R. HUBBUCK AND Z. MAHMUD1

Abstract. We prove that BU_p has only two standard H-structures.

The two most familiar H-multiplications on BU arise from the direct sum of complex vector bundles and from the tensor product of virtual line bundles; BU with these multiplications will be denoted by BU^\oplus and BU^\otimes respectively [2]. Both multiplications are standard, define a standard H-space (X, e, μ) to be an H-space whose rational Pontrjagin ring $H_*(X, \mathbb{Q})$ induced by μ is both associative and graded commutative. We consider H-spaces localized at a fixed prime p.

Theorem 1.1. Let m be a standard H-multiplication on BU. Then BU_p^m is H-equivalent to BU_p^\oplus or BU_p^\otimes.

We recall that two H-spaces (X, e, μ) and (Y, f, ν) are H-equivalent if there exists a homotopy equivalence $k: X \to Y$ such that $\nu(k \times k) = k \mu$. The two classes of multiplications on BU_p in Theorem 1.1 can easily be distinguished for the Frobenius map

$$
\xi: H_2(BU_p^m, \mathbb{Z}/p\mathbb{Z}) \to H_2p(BU_p^m, \mathbb{Z}/p\mathbb{Z})
$$

defined by $\xi(x) = x^p$ is nontrivial when $m = \oplus$ but is the zero homomorphism if $m = \otimes$. Theorem 1.1 completes results about standard multiplications on BU_p proved in [4]. The strongest result in this context was given in §4 of [4]. X is assumed to have the homotopy type of a connected CW-complex with finite skeleta.

Theorem 1.2. Let X be a standard H-space and p an odd prime. Assume that
(a) $H^*(X, \mathbb{Z}/p\mathbb{Z})$ is a polynomial algebra,
(b) $\dim_{\mathbb{Q}} H_2^j(X, \mathbb{Z}/p\mathbb{Z}) \leq 1$ for all i and the equality holds at least for $1 \leq i \leq p - 1,
(c) \xi: H_2(X, \mathbb{Z}/p\mathbb{Z}) \to H_2p(X, \mathbb{Z}/p\mathbb{Z})$ is nontrivial.

Then $X_p = BU_p^\otimes$ as an H-space.

We can now add a companion result for BU_p^\oplus.

Theorem 1.3. Let X be a standard H-space and p an odd prime. Assume that
(a) $H^*(X, \mathbb{Z}/p\mathbb{Z})$ is a polynomial algebra,
(b) $\dim_{\mathbb{Q}} H_2^j(X, \mathbb{Z}/p\mathbb{Z}) \leq 1$ for all i and the equality holds at least for $1 \leq i \leq p$,

1Author supported by Kuwait University Research grant SM102.
(b) $P_1: QH^{2p}(X, Z/pZ) \to QH^{4p-2}(X, Z/pZ)$ is an isomorphism,

(c) $\xi: H_2(X, Z/pZ) \to H_{2p}(X, Z/pZ)$ is trivial.

Then $X_p = BU_p^\otimes$ as an H-space.

It was shown in Theorem 4.4 of [4] that the hypotheses of Theorem 1.3 imply that X_p and BU_p have the same homotopy type. So it remains to show that we can choose a homotopy equivalence which is an H-map. At odd primes Theorem 1.2 and Theorem 1.3 imply Theorem 1.1. When $p = 2$ and the Frobenius map is nontrivial the conclusion of Theorem 1.1 follows from the final few lines of [4]. Therefore in order to complete the proofs of both Theorem 1.1 and Theorem 1.3 it remains to show that if p is any prime $X_p = BU_p$ and the Frobenius map

$$\xi: H_2(X, Z/pZ) \to H_{2p}(X, Z/pZ)$$

is trivial, then $X_p = BU_p^\otimes$ as an H-space.

The results of this paper can be extended to the classifying spaces of other stable classical groups except that when $p = 2$ we must exclude BO and BSO as the central result used in the proofs is Theorem 3.1 of [4] and this cannot be used when homology 2-torsion is present. Therefore we state results for BSU and BSp only.

Theorem 1.4. Let m be a standard multiplication on BG, where $G = SU$ or Sp. Then $BG_p^m = BG_p^\otimes$ as an H-space.

The result corresponding to Theorems 1.2 and 1.3 for BSp is

Theorem 1.5. Let X be a standard H-space and p an odd prime. Assume that

(a) $H^*(X, Z/pZ)$ is a polynomial algebra,

(b)' $\dim QH^{4i+2}(X, Z/pZ) = 0$ for all i,

(b)' $\dim QH^{4i}(X, Z/pZ) \leq 1$ for all i and the equality holds at least for $1 \leq i \leq (p - 1)/2$.

Then $X_p = BSp_p^\otimes$ as an H-space.

A similar theorem can be formulated for BSU.

Again most of the proofs of Theorems 1.4 and 1.5 are in [4]. If $G = SU$ and p is odd, Theorem 1.4 follows from Theorem 4.5 of [4] and if $p = 2$ the result follows as in the last part of the proof for odd p. Theorem 1.5 follows from Theorem 4.1 of [4]. Theorem 1.4 for $G = Sp$ and p odd follows from Theorem 1.5. Therefore to complete the proof of Theorem 1.4 we must show that if $X_2 = BSp_2$, then $X_2 = BSp_2^\otimes$ as an H-space.

The first named author thanks the Department of Mathematics of the University of Kuwait for its hospitality during part of September 1983 when the first draft of this paper was written.

2. The proofs of Theorems 1.1 and 1.3. We assume that $X \simeq BU$ at the prime p and that the Frobenius map

$$\xi: H_2(X, Z/pZ) \to H_{2p}(X, Z/pZ)$$

is trivial. We must define an H-map $k: X_p \to BU_p^\otimes$ which is a homotopy equivalence. The key to the proof is Proposition 2.1 which is established using the main
We recall that \(T(x, r) \subset \mathbb{Q}[x]\) for \(0 \leq r \leq \infty\) is defined to be the subalgebra of \(\mathbb{Z}(p)\) generated by \(1, x, (p!)^{-1}x^p, \ldots, (p'!)^{-1}x^{p'}\). Analogously \(\Delta(x, r) \subset \mathbb{Q}[\xi]\) for \(0 \leq r \leq \infty\) is defined to be the subalgebra over \(\mathbb{Z}(p)\) generated by

\[1, \xi, (p!)^{-1}(\xi - 1) \cdots (\xi - p + 1), \ldots, (p'!)^{-1}(\xi - 1) \cdots (\xi - p' + 1).\]

We consider the zero dimensional complex \(K\)-homology group with coefficients \(\mathbb{Z}(p)\), the integers localized at the prime ideal \((p)\).

Proposition 2.1. (a) \(H_*(X, \mathbb{Z}(p)) \cong \Gamma(x_2, \infty) \otimes \mathbb{Z}(p)[x_4, x_6, \ldots, x_{2n}, \ldots]\) as rings, where both factors are sub-Hopf algebras.

(b) \(K_0(X, \mathbb{Z}(p)) \cong \Delta(\xi_2, \infty) \otimes \mathbb{Z}(p)[\xi_4, \xi_6, \ldots, \xi_{2n}, \ldots]\) as rings, where both factors are sub-Hopf algebras.

Proof. (a) Let \(A = H_*(X, \mathbb{Z}(p))\). Then by Theorem 1.1 of [3] we may write \(A = \bigotimes E(2r)\) as a Hopf algebra where \(r\) runs through those positive integers with \((r, p) = 1\) and as an algebra \(E(2r)\) is generated by classes with dimensions \(2p^r, i \geq 0\). Therefore \(A^* = \bigotimes E(2r)^* = H^*(X, \mathbb{Z}(p))\). Now \(X_p = BU_p\) and so the conditions of Theorem 3.1(c) of [4] are satisfied for \(r > 1\) and we deduce that \(E(2r)^* \cong \mathbb{C}(2r, 0)\) in the notation of that paper. But \(\mathbb{C}(2r, 0) \cong \mathbb{C}(2r, 0)\) as a Hopf algebra and as an algebra

\[\mathbb{C}(2r, 0) \cong \mathbb{Z}(p)[x_2r, x_2p, \ldots, x_{2p^r}, \ldots].\]

It remains to consider \(E(2)\). Theorem 1.1 of [5] implies that \(E(2) \cong \Gamma(x_2, r) \otimes D\) where \(D\) is a polynomial algebra. The condition on the Frobenius map implies that \(r \geq 1\) and so \(\dim Q^2 \{E(2) \otimes \mathbb{Z}/p\mathbb{Z}\} = 2\). Thus \(\dim P^2 \{(E(2) \otimes \mathbb{Z}/p\mathbb{Z})^*\} = 2\) and as \((E(2) \otimes \mathbb{Z}/p\mathbb{Z})^*\) is a polynomial algebra it follows that

\[\dim P^2 \{(E(2) \otimes \mathbb{Z}/p\mathbb{Z})^*\} \geq 2\]

for \(i = p^\alpha, \alpha \geq 1\).

Therefore \(\dim Q^2 \{E(2) \otimes \mathbb{Z}/p\mathbb{Z}\} \geq 2\) for \(i = p^\alpha, \alpha \geq 1\). It follows that \(E(2) \cong \Gamma(x_2, \infty) \otimes D\) and so

\[H_*(X, \mathbb{Z}(p)) \cong \Gamma(x_2, \infty) \otimes \mathbb{Z}(p)[x_4, x_6, \ldots, x_{2n}, \ldots]\]

as rings.

Clearly \(\Gamma(x_2, \infty)\) is a sub-Hopf algebra. By modifying the generators \(x_{2n}\) inductively using the basic technique of [3] and in particular of Lemma 2.2 and its proof, one can ensure that the polynomial algebra is a sub-Hopf algebra.

(b) Let \(h: X \to K(\mathbb{Z}(p), 2)\) realize a generator of \(H^2(X, \mathbb{Z}(p))\). Then \(h\) is an \(H\)-map and by part (a),

\[h_*: H_*(X, \mathbb{Z}(p)) \to H_*(K(\mathbb{Z}(p), 2), \mathbb{Z}(p)) \cong \Gamma(x_2, \infty)\]

is surjective. Therefore

\[h_0: K_0(X, \mathbb{Z}(p)) \to K_0(K(\mathbb{Z}(p), 2), \mathbb{Z}(p)) \cong \Delta(\xi_2, \infty)\]

is surjective and so is

\[h_0: K_0(X, \mathbb{Z}(p))_{2n} \to K_0(K(\mathbb{Z}(p), 2), \mathbb{Z}(p))_{2n}\]
in the CW-filtration for each n. Now by again modifying the generators x_{2i} for $i > 1$ given in part (a), we can ensure that $h_\ast(x_{2i}) = 0$ for $i > 1$. We choose $\xi_{2i} \in K_0(X, \mathbb{Z}(p))_2$, whose image in

$$K_0(X, \mathbb{Z}(p))_{2i}/K_0(X, \mathbb{Z}(p))_{2i-2} \cong H_2(X, \mathbb{Z}(p))$$

is x_{2i} and so again by modifying the original choices of the ξ_{2i}, we can ensure that $h_0(\xi_{2i}) = 0$ for $i > 1$. Therefore for each i,

$$(p !)^{-1}(\xi_{2i} - 1) \cdots (\xi_{2i} - p^i + 1) \in K_0(X, \mathbb{Z}(p))$$

and it follows that $K_0(X, \mathbb{Z}(p)) \cong \Delta(\xi_{2i}, \infty) \otimes \mathbb{Z}(p)[\xi_4, \xi_6, \ldots, \xi_{2n}, \ldots]$ as rings.

Again it is clear that $\Delta(\xi_{2i}, \infty)$ is a sub-Hopf algebra and by modifying the original ξ_{2i} for $i > 1$ as in the similar step in (a) we can ensure that the polynomial algebra is a sub-Hopf algebra. This completes the proof.

It follows from Theorem 3.1 of [4] that the Hopf algebra structure of $H_\ast(X, \mathbb{Z}(p))$ is well defined. In fact $H_\ast(X, \mathbb{Z}(p)) \cong \Gamma(x_{2i}, \infty) \otimes (\mathbb{Z}(2,1) \otimes \cdots \otimes \mathbb{Z}(2r,0))$ where $r > 1$ and $(r, p) = 1$ as Hopf algebras. In particular $H_\ast(X, \mathbb{Z}(p)) \cong H_\ast(BU^\ast, \mathbb{Z}(p))$.

We can now complete the proofs. We recall [2, 6] that as an H-space $BU^\ast = K(\mathbb{Z}(p), 2) \times BSU_p^1 \times BU^2_p \times \cdots \times BU^{p-1}_p$ and that H-maps $g_i: X \to BU^i_p$ for $i > 1$ were constructed in §4 of [4] inducing monomorphisms of Hopf algebras

$$g_i^*: H^\ast(BU^i_p, \mathbb{Z}/p\mathbb{Z}) \to H^\ast(X, \mathbb{Z}/p\mathbb{Z}).$$

Therefore we must construct an H-map $g_i: X \to K(\mathbb{Z}(p), 2) \times BSU^1_p$ with similar properties, for then $g_1 \times g_2 \times \cdots \times g_{p-1}: X \to BU^\ast_p$ will be an H-equivalence.

The standard decomposition of BU^\ast_p implies that $K_0(X, \mathbb{Z}(p))$ and $K^0(X, \mathbb{Z}(p))$ decompose canonically into $(p-1)$-summands and we assume that the generators ξ_{2i} of Proposition 2.1(b) lie in their appropriate summands as in [4]. Now $\mathbb{Q}K_0(X, \mathbb{Z}(p)) \cong \mathbb{Q} \oplus \{ \otimes (\mathbb{Z}(p))^{\infty} \}$ where the $\mathbb{Z}(p)$ summands are generated by the images of the ξ_{2i}, (The \mathbb{Q} on the right-hand side denotes the rationals [1].) Therefore

$$PK^0(X, \mathbb{Z}(p)) \cong \text{Hom}(\mathbb{Q}K_0(X, \mathbb{Z}(p)), \mathbb{Z}(p)) \cong \Pi(\mathbb{Z}(p))^{\infty}$$

generated by η_{2i} for $i > 1$ such that $\eta_{2i}(\xi_{2i}) = \delta_{ij}$ and can be taken to lie in their appropriate summands. We consider $\eta_{2p} \in K^0(X, \mathbb{Z}(p))$. As it is primitive, it represents an H-map $\eta_{2p}: X \to BU^1_p$; it has exact CW-filtration $2p$ and the element in the associated graded group $H^{2p}(X, \mathbb{Z}(p))$ is a polynomial generator γ_{2p}. Now since $BU^1_p = K(\mathbb{Z}(p), 2) \times BSU^1_p$ as a space and $\eta_{2p} \in K^0(X, \mathbb{Z}(p))_{2p}$, η_{2p} induces $\eta'_{2p}: X \to BSU^1_p$ with $i: BSU^1_p \to BU^1_p$ is the inclusion. As i is an H-map, η'_{2p} is an H-map. Further since $(\eta'_{2p})! : [BSU^1_p, BU] \to [X, BU]$ maps i to η_{2p} and BSU^1_p is $(2p - 1)$-connected, the induced homomorphism

$$(\eta'_{2p})^*: QH^{2p}(BSU^1_p, \mathbb{Z}(p)) \to QH^{2p}(X, \mathbb{Z}(p))$$

is an isomorphism.

Let $h: X \to K(\mathbb{Z}(p), 2)$ realize a generator of $H^2(X, \mathbb{Z}(p))$. Then $g_1 = h \times \eta_{2p}^*$.

$$X \to K(\mathbb{Z}(p), 2) \times BSU^1_p$$

is an H-map and induces

$$g_1^*: QH^{-2i}(K(\mathbb{Z}(p), 2) \times BSU^1_p, \mathbb{Z}(p)) \to QH^{-2i}(X, \mathbb{Z}(p))$$
which is an isomorphism for $i = 1$ and p. Therefore as in the proof of Theorem 4.4 of [4], it induces an isomorphism for all i of the form $1 + k(p - 1)$. Hence $k = g_1 \times g_2 \times \cdots \times g_p : X \to BU_p^\otimes$ is the mod p H-equivalence we seek.

3. The proof of Theorem 1.4. Let $X \simeq_2 BS\rho$ where X is a standard H-space. We must show that $X \simeq_2 BS\rho^\otimes$ as an H-space and to do this it is sufficient to construct an H-map $k : X \to BS\rho^\otimes$ which induces an isomorphism of cohomology groups in dimension 4.

Lemma 3.1. Let $k : X \to X$ induce an isomorphism $k^* : H^4(X, Z/2Z) \to H^4(X, Z/2Z)$. Then k is a homotopy equivalence.

Proof. If we can show that $k^* : QH^4(X, Z/2Z) \to QH^4(X, Z/2Z)$ is an isomorphism for $i = 2$, then the action of the Steenrod algebra in $H^*(BS\rho, Z/2Z)$ ensures that k^* is an isomorphism for $i > 2$. Thus $k^* : H^*(X, Z/2Z) \to H^*(X, Z/2Z)$ is an isomorphism. The lemma then follows from Whitehead's theorem.

The result needed in dimension 8 is most easily proved using complex K-theory. We know that

$$K^0(X, Z(2)) = Z(2)[[\eta_4, \eta_8, \ldots]]$$

where η_{4n} has exact CW-filtration $4n$ and by direct and standard calculations we can choose η_4 and η_8 such that $\psi^2(\eta_4) = 4\eta_4 + 2\eta_8 + \eta_4^2$. We consider $k! : QK^0(X, Z(2)) \to QK^0(X, Z(2))$ and work mod $QK(X, Z(2))$. Then $k!(\eta_4) = \lambda\eta_4 + \mu\eta_8$ and $k!(\eta_8) = \nu\eta_8$. The hypotheses imply that λ is a unit in $Z(2)$ and we wish to prove the same for ν. Since $\psi^2(\eta_4) = 4\eta_4 + 2\eta_8$ and $\psi^2(\eta_8) = 16\eta_8$, from $\psi^2(k!\eta_4) = k!\psi^2(\eta_4)$ we deduce that $2\lambda = 2\nu \mod 4$ and so ν is a unit. This completes the proof of the lemma.

Theorem 3.1 and the comments which follow Corollary 3.2 in [4] imply that the Hopf algebra structure of $H_*(X, Z(2))$ is well defined. In the notation used there $H_*(X, Z(2)) = \otimes C(2r, 1)$, where r runs over all positive odd integers. In particular,

$$H_*(X, Z(2)) \cong Z_2[\eta_4, \eta_8, \ldots]$$

and so $K_0(X, Z(2)) \cong Z_2[\xi_4, \xi_8, \ldots]$ and $QK_0(X, Z(2)) \cong \oplus (Z_2)^\infty$ where the Z_2 summands are generated by the images of the ξ_{4i}. Therefore

$$PK^0(X, Z(2)) = \text{Hom}(QK_0(X, Z(2)), Z_2) \cong \prod (Z_2)^\infty$$

generated by $\{\eta_{4i}\}$ where $\eta_{4i}(\xi_{4j}) = \delta_{i,j}$. Then $\eta_4 : X \to BU_2^\otimes$ is an H-map and regarded as an element of $K^0(X, Z(2))_4$ has image η_4 a generator in $H^4(X, Z(2))$. As $BU_2 = K(Z(2), 2) \times BSU_2$, $\eta_4^4 : H^4(BU_2, Z(2)) \to H^4(X, Z(2))$ is an isomorphism. We must show that $\eta_4^4 : X \to BU_2$ lifts to an H-map $\eta_4^4 : X \to BS\rho_2$ inducing an isomorphism of 4 dimensional cohomology groups.

We write $KO(\)$ and $KH(\)$ for real and symplectic zero dimensional cohomology groups with $Z(2)$-coefficients. Now X_2 and $X_2 \times X_2$ have local cellular structures in which all cells have dimension $4n$. Thus their real and symplectic K-groups
are torsion free and the complexification and restriction homomorphisms c: $\text{KO}(\) \to K^0(\)$ and $c': \text{KH}(\) \to K^0(\)$ are monomorphisms. We consider $\text{KO}(\)$ and $\text{KH}(\)$ as subgroups of $K^0(\)$. We will require that for X_2 and $X_2 \times X_2$

(3.1) $K^0(\) = \text{KO}(\) + \text{KH}(\)$ and $2K^0(\) = \text{KO}(\) \cap \text{KH}(\)$.

For finite complexes with cells with dimensions $4n$, (3.1) can be proved by induction since $c: \text{KO}(S^{4k}, \mathbb{Z}(2)) \to K^0(S^{4k}, \mathbb{Z}(2))$ is an isomorphism if k is even and has cokernel $\mathbb{Z}/2\mathbb{Z}$ if k is odd and $c': \text{KH}(S^{4k}, \mathbb{Z}(2)) \to K^0(S^{4k}, \mathbb{Z}(2))$ is an isomorphism if k is odd and has cokernel $\mathbb{Z}/2\mathbb{Z}$ if k is even. The conclusion for X_2 and $X_2 \times X_2$ is obtained by taking inverse limits over the finite skeleta.

Now using (3.1) we write $\eta_4 = r + q$ where $r \in \text{KO}(X, \mathbb{Z}(2))$ and $q \in \text{KH}(X, \mathbb{Z}(2))$. We consider $\tilde{m}!: K^0(X, \mathbb{Z}(2)) \to K^0(X \times X, \mathbb{Z}(2))$ where $\tilde{m}! = m! - \pi_1! - \pi_2!$ so that $\tilde{m}!(\eta_4) = 0$. Thus $\xi = \tilde{m}!(r) = -\tilde{m}!(q)$ is both real and symplectic and therefore by (3.1) $\xi = 0$ mod 2. Now the Hopf algebra structure of $H^*(X_2, \mathbb{Z}(2)) \cong \bigotimes C(2r, 1)$ is well understood and $\text{PH}^*(X_2, \mathbb{Z}(2)) \cong \bigoplus (\mathbb{Z}(2))^\infty$ generated by y_{2i} elements in the associated graded group corresponding to η_{4i}. In $H^*(X_2, \mathbb{Z}(2))$ if a homogeneous element z is primitive mod 2, then $z = z' + 2z''$ where z' is primitive.

By working inductively along the filtration in $K^0(X_2, \mathbb{Z}(2))$ one deduces that if $\tilde{m}!(\phi) = 0$ mod 2, then $\phi = \phi' + 2\phi''$ where $\tilde{m}!(\phi') = 0$. We deduce that $q = q' + 2q''$ where $q' \in K^0(X_2, \mathbb{Z}(2))$ is primitive and as $q' = q - 2q''$ it lies in $KH(X_2, \mathbb{Z}(2))$.

Let $r' = r + 2q''$. Then $\eta_4 = q' + r'$ where $q': X_2 \to BS\mathcal{P}_2$ is an H-map. Now $r' \in K^0(X_2, \mathbb{Z}(2))_4$ has an image in $H^4(X_2, \mathbb{Z}(2))$ which is divisible by 2, since $\text{KO}(S^4) \to K^0(S^4)$ has cokernel $\mathbb{Z}/2\mathbb{Z}$. Thus the image of q' in $H^4(X_2, \mathbb{Z}(2))$ is a generator.

We set $k = q': X_2 \to BS\mathcal{P}_2$ which has all the properties required of it to complete the proof.

REFERENCES