GENERALIZED INTERSECTION MULTIPlicITIES
OF MODULES. II

SANKAR P. DUTTA

ABSTRACT. The vanishing conjecture for intersection multiplicities in dimensions \(\leq 5 \) is true in greater generality than previously known.

In this note we prove a more general theorem than Corollary 2.5 of [D1]. Since both the vanishing and nonvanishing conjectures are not true in general [DHM], it is now important to understand the following question: What can we say about

\[
\chi^R(M, N) = \sum_{i=0}^{d} (-1)^i l(\text{Tor}_i^R(M, N)),
\]

where \(R \) is a Gorenstein ring, and \(M \) and \(N \) are modules over \(R \) with finite projective dimension such that \(l(M \otimes_R N) < \infty \), \(\dim M + \dim N \leq \dim R \), and \(d = \text{p.d.} M \)?

The following theorems partially answer the question up to dimension 5.

Throughout §1 all tensor products, Tor’s and Euler characteristics are computed over \(R \).

1.1. Theorem. Let \(R \) be a Gorenstein ring of dimension \(\leq 5 \). Let \(M \) and \(N \) be modules of finite projective dimension with \(l(M \otimes_R N) < \infty \) and \(\dim M + \dim N < \dim R \). Then \(\chi(M, N) = 0 \).

Proof. First we note that §§1.1 and 1.3 of [D1] hold true in the above case. The sufficient part of Theorem 2.4 of [D1] is still valid, though the statement has to be changed a bit in the following way:

1.2. Theorem. Let \(R \) be a Gorenstein ring of dim \(N \). If for any two perfect modules \(M \) and \(N \) with (i) \(\dim M + \dim N = \dim R \), and (ii) \(l(M \otimes_R N) < \infty \), \(l(M \otimes N) = l(M \otimes \tilde{N}) \), then the vanishing conjecture holds in \(R \) for every pair of modules of finite projective dimension. Here \(\tilde{N} = \text{Ext}^{\dim N-1}(N, R) \), \(r = \dim N \).

Proof of this theorem can be obtained by following the argument of (2.4) of [D1].

To prove our theorem, by 1.2 it is enough to prove that

(1) \(l(T \otimes_R Q) = l(T \otimes_R \tilde{Q}) \ldots \),

where \(T \) and \(Q \) are any two perfect modules over \(R \) with \(l(T \otimes Q) < \infty \) and \(\dim T + \dim Q = \dim R \).

Received by the editors August 29, 1983 and, in revised form, April 30, 1984.
1980 Mathematics Subject Classification. Primary 13H15; Secondary 13D99, 14C17.

©1985 American Mathematical Society
0002-9939/85 $1.00 + $.25 per page
Case 1. \(\dim T = 5 \), i.e., \(T \) is free, hence \(l(Q) < \infty \). Since \(l(Q) = l(\hat{Q}) \), \(l(T \otimes Q) = l(T \otimes \hat{Q}) \).

Case 2. \(\dim T = 4 \). In this case by killing an \(R \)-sequence which is also an \(M \)-sequence of length four contained in \(\text{Ann}_R Q \), we reduce the proof to proving (1) on a Gorenstein ring of dimension 1 and, hence, we are done.

Case 3. \(\dim T = 3 \). In this case killing an \(M \)-sequence which is also an \(R \)-sequence of length 3, contained in \(\text{Ann}_R Q \), we reduce the proof to proving (1) on a Gorenstein ring of dim 2 and we are done by (1.1) of [D1].

Similar arguments hold true when \(\dim R \leq 4 \).

The next theorem throws a little more light on the nonvanishing conjecture. (This is a changed version of Proposition (3.4) of [D1].)

1.3. Theorem. Let \(R \) be a complete Gorenstein ring of \(\dim 5 \) whose coefficient ring is a discrete valuation ring \(V \), and let \(p \) be a generator of the maximal ideal of \(V \). Let \(M \) and \(N \) be two modules over \(R \) such that (i) \(M \) is perfect and \(\text{p.d. } N < \infty \), (ii) \(l(M \otimes_R N) < \infty \), (iii) \(\dim M + \dim N = 5 \), (iv) \(pN = 0 \), and \(p \) is a n.z.d. on \(M \). Then \(\chi(M, N) > 0 \).

For the proof we refer the reader to (1.8) and Corollaries 5 and 6 of [D2].

Remark. Theorems (2.2) and (2.4) of [D1] and Theorem 1.1 can be proved with the assumption that \(R \) is a Cohen-Macaulay ring. The techniques are the same; one has only to consider spectral sequences \(\text{Ext}^r_S(\text{Tor}^R_r(M, N), S) \) and \(\text{Ext}^r_R(M, \text{Ext}^r_S(N, S)) \), and instead of taking \(\hat{M}, \hat{N} \) as defined in the Gorenstein case with \(\text{p.d. } M = d \), say, one should consider \(\hat{M} = \text{Ext}^r_S(M, R) \) and \(\hat{N} = \text{Ext}^r_S(N, S) \), \(r = \dim N \). Here \(S \) is a Gorenstein ring such that \(R = S/I \) and \(\dim R = \dim S \) (assuming \(R \) to be complete).

References

Department of Mathematics, University of Pennsylvania, Philadelphia, Pennsylvania 19104

School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540