SELF-DUAL LATTICES FOR MAXIMAL ORDERS
IN GROUP ALGEBRAS
DAVID GLUCK

ABSTRACT. Let G be a finite group and V an irreducible $\mathbb{Q}[G]$-module. Let R be a Dedekind domain with quotient field \mathbb{Q} such that $|G|$ is a unit in R. For applications to topology it is of interest to know if V contains a full self-dual $R[G]$-lattice. We show that such lattices always exist for some major classes of finite groups.

Let G be a finite group and let R be a Dedekind domain with quotient field \mathbb{Q} such that $|G|$ is a unit in R. We say that a $\mathbb{Q}[G]$-module V is balanced if V contains a full self-dual $R[G]$-lattice. For applications to surgery theory (see [10, p. 28–36]) it is of interest to establish criteria for balance.

We show that any irreducible $\mathbb{Q}[G]$-module is balanced when G is p-hyperelementary for an odd prime p, when $|G|$ is odd, or when G is a 2-group. We know of no example of an unbalanced $\mathbb{Q}[G]$-module for any finite group G. Theorem 3, our main criterion for balance, follows easily from standard but deep results in integral representation theory.

I would like to thank Bruce Williams for bringing this problem to my attention.

Preliminaries. For G and R as above, $R[G]$ is a maximal order in $\mathbb{Q}[G]$ by [9, Theorem 41.1]. Therefore every left $R[G]$-lattice L is projective, and L is indecomposable if and only if $\mathbb{Q}L$ is an irreducible $\mathbb{Q}[G]$-module [9, Corollary 21.5]. The central primitive idempotents e_i ($1 \leq i \leq m$) of $\mathbb{Q}[G]$ lie in $R[G]$ by [9, Theorem 10.5], and any $R[G]$-lattice L decomposes as $L = e_1L \oplus \cdots \oplus e_mL$. If L and M are isomorphic $R[G]$-lattices, so are e_iL and e_iM for each i. By [9, Theorems 11.1 and 18.7] two $R[G]$-lattices L and M belong to the same genus if and only if $QL \cong QM$. If $H \leq G$ and L is an $R[H]$-lattice, then L^G denotes the induced lattice $R[G] \otimes_{R[H]} L$.

If L is a left $R[G]$-lattice, then L^* denotes the dual (contragredient) left $R[G]$-lattice. If L affords the matrix representation $\rho: G \to \text{GL}(n, R)$, then L^* affords the composition of ρ with the inverse transpose automorphism of $\text{GL}(n, R)$. In particular, $L \cong L^{**}$. For e_i as above, $e_iL^* \cong (e_iL)^*$. If L is an $R[H]$-lattice for some $H \leq G$, then $(L^*)^G \cong (L^G)^*$.

If V is a $\mathbb{Q}[G]$-module, let χ_V denote the character of V. If χ is an irreducible complex character of G, let $m(\chi)$ denote the Schur index of χ over \mathbb{Q}, and let $\text{Tr}(\chi)$ denote the sum of the distinct algebraic conjugates of χ. If ψ is any rational-valued character of G, let $p(\psi)$ be the permutation index of ψ—the least integer p such that $p\psi$ is an integral linear combination of permutation characters of G. By [4, Theorem 5.21] $p(\psi)$ divides $|G|$.

Received by the editors April 5, 1984.

1980 Mathematics Subject Classification. Primary 20C10; Secondary 20C15.

©1985 American Mathematical Society
0002-9939/85 $1.00 + .25 per page

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
The following lemmas contain the key results we need from integral representation theory. If M and N are $R[G]$-lattices, we write $M|N$ to mean that M is isomorphic to a direct summand of N.

Lemma 1. Let V be an irreducible $Q[G]$-module. Let M and N be $R[G]$-lattices such that $QM \cong mV$ and $QN \cong nV$, with $m < n$. Then $M|N$.

Proof. Let $M = M_1 \oplus \cdots \oplus M_m$ and $N = N_1 \oplus \cdots \oplus N_n$ be decompositions of M and N as direct sums of indecomposable lattices. Since $M_1, N_1,$ and N_2 belong to the same genus, we may write $N_1 \oplus N_2 \cong M_1 \oplus L_1$ for an indecomposable $R[G]$-lattice L_1 by [9, Corollary 27.3]. Let $M' = M_2 \oplus \cdots \oplus M_m$ and let $N' = L_1 \oplus N_3 \oplus \cdots \oplus N_n$. Then $M \cong M_1 \oplus M'$ and $N \cong M_1 \oplus N'$. By induction on m we may assume $M' | N'$. Hence $M | N$. \[\square\]

We say that a $Q[G]$-module V is Eichler if no simple component of $\text{End}_{Q[G]}[V]$ is a totally definite quaternion algebra, as defined in [9, p. 293]. We note that if V is an irreducible $Q[G]$-module which is not Eichler, and χ is an irreducible complex constituent of χ_V, then $\chi(1) = m(\chi) = 2$. The structure of $G/Ker V$ is severely restricted; see [9, p. 344]. We say that an $R[G]$-lattice L is Eichler if QL is Eichler.

Lemma 2. Let X, M, and N be $R[G]$-lattices. If $X \otimes M \cong X \otimes N$ and M is Eichler, then $M \cong N$.

Proof. See [5, p. 14]. \[\square\]

The main criterion.

Theorem 3. Let V be an irreducible $Q[G]$-module. Suppose $p(\chi_V)$ is odd and V is Eichler. Then V is balanced.

Proof. Let $p = p(\chi_V)$. Then $pV \oplus V_1 \cong V_2$ for $Q[G]$-permutation modules V_1 and V_2. Let L_1 and L_2 be full self-dual $R[G]$-lattices in V_1 and V_2, respectively. Let e be the primitive central idempotent in $Q[G]$ which corresponds to V. Then eL_1 and eL_2 are full self-dual $R[G]$-lattices in eV_1 and eV_2, respectively. By Lemma 1 we may write $eL_2 = eL_1 \oplus L_0$ for an $R[G]$-lattice L_0 with $QL_0 \cong pV$. Taking duals yields $eL_2 \cong eL_1 \oplus L_0^\circ$. By Lemma 2 we have $L_0 \cong L_0^\circ$.

Now let M be a fixed $R[G]$-lattice with $QM \cong V$. Let $M_0 = \frac{1}{2}(p - 1)(M \oplus M^*)$. By Lemma 1 we may write $L_0 \cong M_0 \oplus M_1$, where $QM_1 \cong V$. Since $M_0^\circ \cong M_0$ and $L_0^\circ \cong L_0$, we have $L_0 \cong M_0 \oplus M_1^*$. Lemma 2 yields $M_1 \cong M_1^*$. \[\square\]

We recall that a group G is called p-hyperelementary if G has a cyclic normal p-complement.

Corollary 4. Suppose G is p-hyperelementary for an odd prime p, $|G|$ is odd, or G is abelian. Then every irreducible $Q[G]$-module V is balanced.

Proof. Suppose first that G is p-hyperelementary for an odd prime p. Let χ be an irreducible complex constituent of χ_V. By [4, Theorem 6.15] $\chi(1)$ is odd, so V is Eichler. By [6, Definition 1.6 and Proposition 7.2] χ_V has odd permutation index. Hence, V is balanced by Theorem 3. A similar argument works if $|G|$ is odd.

If G is cyclic, then G is p-hyperelementary for any odd prime p, so V is balanced. If G is abelian, then $G/Ker V$ is cyclic, so V is balanced. \[\square\]
COROLLARY 5. Let G be a finite group and V an irreducible $\mathbb{Q}[G]$-module. If V is Eichler and V_H is balanced for every 2-hyperelementary subgroup H of G, then V is balanced.

PROOF. Let \mathcal{H} be the family of all hyperelementary subgroups of G. By [4, Theorem 8.10] we may write

$$1_G = \sum_{H \in \mathcal{H}} a_H 1_H^G - \sum_{H \in \mathcal{H}} b_H 1_H^G,$$

where all the a_H and b_H are nonnegative integers. Then

$$\chi_V = \sum_{H \in \mathcal{H}} a_H (\chi_V|_H)^G - \sum_{H \in \mathcal{H}} b_H (\chi_V|_H)^G.$$

Hence,

$$V \oplus \bigoplus_{H \in \mathcal{H}} b_H (V_H)^G \cong \bigoplus_{H \in \mathcal{H}} a_H (V_H)^G.$$

By the hypotheses and Corollary 4, V_H and, hence, $(V_H)^G$ are balanced for all $H \in \mathcal{H}$. Let L_1 and L_2 be full self-dual $\mathbb{R}[G]$-lattices in $\bigoplus_{H \in \mathcal{H}} b_H (V_H)^G$ and $\bigoplus_{H \in \mathcal{H}} a_H (V_H)^G$, respectively. The argument in the first paragraph of the proof of Theorem 3 shows that V is balanced. ■

REMARKS. When G is 2-hyperelementary and V is an irreducible $\mathbb{Q}[G]$-module, there is a subgroup H of G and a primitive $\mathbb{Q}[H]$-module W such that $V = W^G$. Let $H = H/\ker W$. Since every normal abelian subgroup of H is cyclic, an application of [11, Lemma 2.3] to $H^2(x)$ shows that H contains a self-centralizing normal cyclic subgroup. Thus the question of whether V is balanced reduces in a sense to a Galois action situation, as in the Brauer-Witt theorem on Schur indices; see [4, Theorem 10.7].

We also remark that Corollaries 4 and 5 do not exhaust the applications of Theorem 3. See [2, 7 and 8] for more information about permutation indices.

2-groups. We prove a strong form of the balance property for 2-groups.

PROOF. Let G be a 2-group with a faithful irreducible primitive $\mathbb{Q}[G]$-module V. To prove the proposition, it suffices to show that $|G| \leq 2$. Since G has no noncyclic normal abelian subgroup, [3, Theorem 5.4.10] shows that G is cyclic, dihedral, semidihedral, or generalized quaternion. Also, $G \neq D_8$ and we may assume $G \neq 1$.

Suppose G is not cyclic and $|G| > 8$. Let $< x >$ be the maximal cyclic subgroup of G and choose $t \in G$ so that $G = < t, x >$. If G is not generalized quaternion, choose t to be an involution. Let $G_0 = < t, x^2 >$. Let λ be a faithful linear character of $< x >$ and let $\lambda(x) = \epsilon$. Then ϵ is a primitive 2^nth root of 1 for some $n \geq 3$. Let $\chi = \lambda^G$ and let $\chi_0 = \chi|_{G_0} = (\lambda^G|_{< x^2 >})^{G_0}$. Then χ and χ_0 are irreducible complex characters of G and G_0, respectively.

The field of values $\mathbb{Q}(\chi_0)$ is contained in $\mathbb{Q}(\epsilon^2)$, while $\chi(x) = \epsilon + \epsilon^{-1}$ or $\epsilon + \epsilon^{2^{n-1}-1}$. Let σ be the unique nonidentity field automorphism of $\mathbb{Q}(\epsilon)$ which fixes ϵ^2. Then $\epsilon^\sigma = \epsilon^{2^{n-1}+1} = -\epsilon$. Hence, $\chi(x)^\sigma = -\chi(x) \neq 0$, so that $\chi^\sigma \neq \chi$, $\chi_0^G = \chi + \chi^\sigma$, and $[\mathbb{Q}(\chi) : \mathbb{Q}(\chi_0)] = 2$. By [1, 11.7 and 11.8] we have $m(\chi) = m(\chi_0)$. License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Therefore \((m(\chi_0)\text{Tr} \chi_0)^G = m(\chi)\text{Tr}(\chi)\). It follows that \(V\) is induced from an irreducible \(\mathbb{Q}[G_0]\)-module, contrary to assumption.

Thus \(G = Q_8\) or \(G\) is cyclic. In these cases \(G\) has a unique faithful irreducible \(\mathbb{Q}[G]\)-module which is induced from the unique subgroup of \(G\) of order 2. Since \(V\) is primitive, \(|G| = 2\), \(\blacksquare\).

FINAL REMARK. The referee has pointed out that it would be more significant to discuss whether a \(\mathbb{Q}[G]\)-module contains a self-dual \(\mathbb{Z}[G]\)-lattice rather than a self-dual \(\mathbb{R}[G]\)-lattice. For the application to topology, however, our results on \(\mathbb{R}[G]\)-lattices are significant. They show that, for appropriate \(G\), the computation of relative surgery obstruction groups arising in a certain long exact sequence reduces to the computation of surgery obstruction groups for maximal orders in division algebras.

REFERENCES