CONTINUOUS FUNCTIONS ON POLAR SETS

RAMASAMY JESURAJ

Abstract. Let Ω be a second countable Brelot harmonic space with a positive potential. If K is a compact subset of Ω with more than one point, then K is a polar set iff every positive continuous function on K can be extended to a continuous potential on Ω. This is a generalization of the result proved by H. Wallin for the special case $\Omega = \mathbb{R}^n$ $(n \geq 3)$ with Laplace harmonic space.

The objective of this paper is to generalize to axiomatic spaces of harmonic functions a well-known result of H. Wallin [6] which states that a compact set $K \subset \mathbb{R}^n$, $n \geq 3$, has Newtonian capacity 0 iff every positive continuous function on K is the restriction to K of a positive Newtonian potential on the whole space. We give the generalization of this result at the setting of Brelot space [3], which contains a positive potential, and the topology of the space has countable space for open sets. Accordingly, we prove

Theorem 1. Let K be a compact subset contained in Ω, a Brelot space as above, such that every positive continuous function on K can be uniformly approximated on K by positive superharmonic functions on Ω. Further, let K contain at least two points. Then K is polar.

Theorem 2. Let K be a compact polar subset of Ω, f_0 a positive continuous function on K, and F_0 a relatively compact open neighborhood of K. Then there is a continuous potential p on Ω such that $p = f_0$ on K and p is harmonic on $\Omega \setminus F_0$.

In view of the fact that there are Brelot spaces of the nature mentioned here in which point sets need not be polar [2], the restriction in Theorem 1 is quite warranted. We can write $K = F \cup G$, with F and G closed subsets of Ω, neither of which is a subset of the other. Let z be in G and not in F. Then, by the Tietze extension theorem, for each positive integer n there is a continuous function f_n on K such that $f_n > 0$ on K, and $f_n(x) = 1$ for all x in F and $f_n(z) = 1/2^n$. Choose ε such that $0 < \varepsilon < 1/2$. Then, by hypothesis, there is a positive superharmonic function q_n on Ω such that $|f_n(x) - q_n(x)| < \varepsilon/2^{n-1}$, i.e.,

$$1 - \frac{\varepsilon}{2^{n-1}} < q_n(x) < 1 + \frac{\varepsilon}{2^{n-1}}$$

for all x in F.
and
\[\frac{1}{2^n} - \frac{\epsilon}{2^{n-1}} < q_n(z) < \frac{1}{2^n} + \frac{\epsilon}{2^{n-1}}. \]

Put \(q(x) = \sum_{n=1}^{\infty} q_n(x) \) on \(\Omega \). Then, obviously, \(q \) is a superharmonic function and \(q = \infty \) on \(F \). Hence, \(F \) is a polar set. Similarly, \(G \) is also a polar set. Thus, \(K \) is a polar set.

The proof of Theorem 2 relies on first providing an approximation which is in line with the conclusion of the Theorem 1. We also include the following application, which is a generalization of another result of H. Wallin (see [6, Remark 4, p. 62]).

Theorem 3. Let \(\Omega \) be a selfadjoint Brelot space [5] with second axiom of countability, \(\delta \) a regular domain in \(\Omega \), and \(K \) a compact polar set \(\subset \delta \). Assume that the constant function 1 is superharmonic on \(\Omega \). Then, given any positive continuous function \(f \) on \(K \), there is a continuous potential \(p \) on \(\Omega \) such that \(p \) is harmonic on \(\delta \), \(f = p \) on \(K \), and \(D_p(\delta) < \infty \), where \(D_p \) is the gradient measure, in the sense of Maeda, associated with \(p \) [5].

Proof. By Theorem 2 there is a continuous potential \(q_1 \) on \(\Omega \) such that \(f = q_1 \) on \(K \). Since \(f \) is continuous on \(K \), there is a constant \(b \) such that \(0 < f < b \) on \(K \). Put \(q = \min(q_1, b) \) on \(\Omega \). Then \(q \) is a bounded continuous potential on \(\Omega \) and \(q = f \) on \(K \). Let

\[
p(x) = \begin{cases} \int q(z) \, d\rho_{\delta}^p(z) & \text{if } x \in \delta, \\ q(x) & \text{if } x \in \Omega \setminus \delta. \end{cases}
\]

Then \(p \) is a bounded continuous potential on \(\Omega \), and \(p \) is harmonic on \(\delta \). By a result of Maeda [5], \(D_p(\delta) < \infty \). Further, since \(K \subset \delta \), \(f(x) = q(x) = p(x) \) for every \(x \) in \(K \). The proof is complete.

Acknowledgement. The results of this paper formed part of a thesis submitted to McGill University. I would like to thank Professor K. N. Gowrisankaran for guiding my thesis and for his help in preparing this article.

1. Preliminaries. From now on, let \(K \) denote a compact polar set in a Brelot space \(\Omega \). The next theorem is a converse of Theorem 1.

Theorem 4. Given a positive continuous function on \(K \) and an \(\epsilon > 0 \), there exists a continuous potential \(p \) on \(\Omega \) such that \(|f - p| < \epsilon \) on \(K \).

Proof. Let \(\{U_n\}_{n=1}^{\infty} \) be a decreasing sequence of relatively compact open subsets of \(\Omega \) such that \(U_n \supset U_{n+1} \supset U_{n+1} \) for \(n = 1, 2, 3, \ldots \), and \(\cap_{n=1}^{\infty} U_n = K \). For each \(n \), let \(f_n \) be a continuous extension of \(f \) to \(\Omega \) such that \(f_n \geq 0 \) on \(\Omega \), and \(f_n \) has support contained in \(U_n \). Taking the infimum at each stage, we may assume that \(\{f_n\}_{n=1}^{\infty} \) is a decreasing sequence. Note that \(f_n \rightarrow 0 \) outside \(K \) and \(f_n \rightarrow f \) on \(K \). From the fact that \(\{R_f^K\}_{n=1}^{\infty} = \{R_{f_n}^K\}_{n=1}^{\infty} \) is a decreasing sequence, it can be proved that \(R_{f_n} \rightarrow R_f^K \) pointwise on \(\Omega \). However, it is routine to prove that \(R_{f_n}^K = f \) on \(K \). Hence, \(R_{f_n} \rightarrow f \) on
Since, for each \(n \), \(Rf_n \) is a continuous potential on \(\Omega [2] \), by Dini's theorem, the convergence is uniform on \(K \). Thus, there is an \(m \) such that \(|Rf_n - f| < \epsilon\) on \(K \) if \(n \geq m \).

Theorem 5. Let \(f_0 \) be a positive continuous function on \(K \), and let \(F_0 \) be a relatively compact open neighbourhood of \(K \). Put \(F = \overline{F_0} \) and let \(f \) be a nonnegative continuous extension of \(f_0 \) to \(\Omega \), such that \(f > 0 \) on \(F \). Then, given \(\epsilon > 0 \), there is a continuous potential \(p \) on \(\Omega \) such that \(p < f \) on \(F \) and \(p \geq f_0 - \epsilon \) on \(K \). In fact, \(p \) can be chosen to be harmonic outside \(F \).

Proof. We can assume \(\epsilon > 0 \) is small enough so that \(f_0 - \epsilon > 0 \) on \(K \). Apply the proof of the previous theorem to the function \(f_0 - \epsilon \). Let \(U_n \) be a sequence of relatively compact open subsets of \(\Omega \) such that \(U_n \supseteq \overline{U}_{n+1} \supseteq U_{n+1}, n = 1, 2, 3, \ldots \). Let \(g_n \) be a nonnegative, continuous extension of \(f_0 - \epsilon \) to \(\Omega \), with the support of \(g_n \subseteq U_n \), and such that \(Rg_n \) converges to \((f_0 - \epsilon)\chi_K \) on \(\Omega \) as \(n \to \infty \).

Now, let \(\eta > 0 \) such that \(\eta < \epsilon \) and \(f_0 - \epsilon + \eta < f_0 \) on \(K \). Since \(Rg_n \) converges to \(f_0 - \epsilon \) uniformly on \(K \), there is an integer \(n_1 \) such that \(Rg_n < f_0 - \epsilon + \eta \) on \(K \) if \(n \geq n_1 \). Since \(Rg_n \) and \(f - \epsilon + \eta \) are two continuous functions on \(\Omega \), the set \(V \), defined as \(\{ x \in \Omega : Rg_n(x) < (f(x) - \epsilon + \eta) \} \), is an open set containing \(K \). Further, \(Rg_n \) is a decreasing sequence of functions on \(\Omega \). Hence,

\[
Rg_n(x) < f(x) - \epsilon + \eta \quad \text{for every } x \text{ in } V \text{ and every } n \geq n_1.
\]

Now \(F_0 \cap V \) is an open set which clearly contains \(K \). This implies that there is an integer \(n_2 \) such that

\[
\overline{U}_n \subseteq V \cap F \quad \text{if } n \geq n_2.
\]

Put \(n_3 = \max(n_1, n_2) \). Choose \(\alpha > 0 \) such that \(f \geq \alpha \) on \(F \). Observe that \(F \setminus U_{n_3} \) is a compact subset of \(\Omega \), and \(Rg_n \) decreases to zero on \(F \setminus U_{n_3} \) as \(n \to \infty \). Hence, by Dini's theorem, the convergence is uniform, i.e., there is an integer \(n_4 \) such that \(Rg_n \leq \alpha/2 \) on \(F \setminus U_n \) if \(n \geq n_4 \).

Put \(m = \max(n_3, n_4) \) and \(p = Rg_m \). Then it follows that \(p \) is a continuous potential; on \(F \setminus U_{n_3} \),

\[
p = Rg_m \leq Rg_{n_4} \leq \alpha/2 < f;
\]

and, lastly, using (1) and (2),

\[
p = Rg_m \leq Rg_{n_3} \leq Rg_{n_1} \leq f - \epsilon + \eta < f \quad \text{on } U_{n_3}.
\]

Thus \(p < f \) on \(F \). Further, on \(K, f_0 - \epsilon = g_m \leq Rg_m = p \). The proof is complete.

2. Proof of Theorem 2. Now we prove the main theorem.

Put \(F = \overline{F_0} \). Choose \(f \), a nonnegative continuous extension of \(f_0 \) to \(\Omega \), such that \(f > 0 \) on \(F \) and \(f \) is zero outside a compact subset of \(\Omega \). Let \(\{U_n\} \) be a sequence of relatively compact open subsets of \(\Omega \) such that \(U_{n+1} \subseteq \overline{U}_{n+1} \subseteq U_n \) for \(n = 0, 1, 2, \ldots \), and \(K = \bigcap_{n=0}^{\infty} U_n \).

We can assume that \(U_0 \subseteq F_0 \). Fix a small \(\epsilon > 0 \).

By the previous theorem there is a continuous potential \(p_0 \) on \(\Omega \) such that:

(i) \(p_0(x) < f(x) \) for every \(x \) in \(F \),

(ii) \(p_0(x) \geq f_0(x) - \epsilon \) for every \(x \) in \(K \), and

(iii) \(p_0 \)
is a harmonic function on the open set $\Omega \setminus \overline{U}_0$. Let $f_1 = \max(f - p_0, 0)$ on Ω. Then f_1 is a continuous function on Ω and $f_1 > 0$ on F. Applying the previous theorem to f_1 and then proceeding inductively, we obtain a sequence $\{p_n\}_{n=1}^\infty$ of continuous potentials on Ω such that: (i) p_i is a harmonic function on the open set $\Omega \setminus \overline{U}_i$ for every i, (ii) $\sum_{i=0}^n p_i < f$ on F for every n, and (iii) $\sum_{i=0}^n p_i \geq f_n - \epsilon/2^n$ on K for every n.

Put $p = \sum_{i=0}^\infty p_i$. It is clear that p is a potential function on Ω. Further, on K,

$$f_0 - \epsilon/2^n \leq \sum_{i=0}^n p_i < f = f_0$$

for every n.

Taking the limit as $n \to \infty$, we conclude that $p = f_0$ on K.

Now p_i is a harmonic function outside $\overline{U}_i \subset F_0 \subset F$ for every i. Hence, $\sum_{i=0}^n p_i$ is a harmonic function outside F. Therefore, on every connected component of $\Omega \setminus F$, $p = \lim_{n \to \infty} \sum_{i=0}^n p_i$, is either a harmonic function or identically $+\infty$. But p is a superharmonic function on Ω. This implies that p is finite on a dense subset of Ω, which eliminates the second possibility. Hence, p is a harmonic function on $\Omega \setminus F$.

Thus, we are left with proving the continuity of p on Ω.

Let z be in $\Omega \setminus F$. Since p is a harmonic function on the open set $\Omega \setminus F$, it is continuous at z. Let z be in K. Then

$$p(z) \leq \liminf_{x \to z} p(x) \quad \text{(by lower semicontinuity of } p)$$
$$\leq \limsup_{x \to z} p(x)$$
$$= \limsup_{x \to z} p(z) \quad \text{(as } F_0 \text{ is an open neighbourhood of } z)$$
$$\leq f(z) \quad \text{(as } f \text{ is continuous at } z)$$
$$= f_0(z)$$
$$= p(z) \quad \text{(as } p = f_0 \text{ on } K).$$

Hence, p is continuous at z.

Now, let z in $F \setminus K$. Then there exists an integer N such that $z \notin U_n$ if $n \geq N$. By writing $p(x) = \sum_{i=0}^{N-1} p_i(x) + \sum_{i=N}^\infty p_i(x)$, we see that $\sum_{i=N}^\infty p_i(x)$ is a harmonic function in an open neighbourhood of z. In particular, $\sum_{i=N}^\infty p_i(x)$ is continuous at z. Being a finite sum of continuous functions at z, $\sum_{i=0}^{N-1} p_i$ is a continuous function at z. Hence, p is continuous at z. Thus, p is continuous on Ω, and the proof is complete.

Corollary 6. Assume that the constant functions are harmonic on Ω. If K is a compact polar subset of Ω, then every continuous function on K can be extended to a superharmonic function on Ω.

Bibliography

Department of Mathematics and Computer Science, State University of New York, Brockport, New York 14420

Current address: Prime Computer, Incorporation, 500 Old Connecticut Path, Framingham, Massachusetts 01701