A unique decomposition of involutions of handlebodies
HTML articles powered by AMS MathViewer
- by Roger B. Nelson
- Proc. Amer. Math. Soc. 93 (1985), 358-362
- DOI: https://doi.org/10.1090/S0002-9939-1985-0770554-6
- PDF | Request permission
Abstract:
We consider a PL involution of an orientable, $3$-dimensional handlebody for which each component of the fixed point set is $2$-dimensional. The handlebody is uniquely equivariantly decomposed as a disk sum of handlebodies ${M_i}$ such that if ${M_i} \approx {A_i} \times I$, then $h|{M_i}$ is equivalent to (i) $\alpha \times {\text {i}}{{\text {d}}_I}$, where $\alpha$ is an involution of $A$, or to (ii) ${\text {i}}{{\text {d}}_a} \times r$, where $r(t) = - t$ for all $t \in I = [ - 1,1]$.References
- Jonathan L. Gross, A unique decomposition theorem for $3$-manifolds with connected boundary, Trans. Amer. Math. Soc. 142 (1969), 191–199. MR 246303, DOI 10.1090/S0002-9947-1969-0246303-2
- Roger B. Nelson, Some fiber preserving involutions of orientable $3$-dimensional handlebodies, Houston J. Math. 9 (1983), no. 2, 255–269. MR 703274
- C. P. Rourke and B. J. Sanderson, Introduction to piecewise-linear topology, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 69, Springer-Verlag, New York-Heidelberg, 1972. MR 0350744
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 93 (1985), 358-362
- MSC: Primary 57S25; Secondary 57Q99, 57S17
- DOI: https://doi.org/10.1090/S0002-9939-1985-0770554-6
- MathSciNet review: 770554