SHORTER NOTES

The purpose of this department is to publish very short papers of unusually elegant and polished character, for which there is no other outlet.

A SHORT PROOF OF THE BIRKHOFF-SMALE THEOREM

T. MROWKA

ABSTRACT. A short proof of the Birkhoff-Smale theorem on homoclinic points of diffeomorphisms is given. The proof is elementary in that only the local properties of a hyperbolic fixed point are assumed.

The following theorem is fundamental in understanding how homoclinic points complicate the dynamics of a diffeomorphism.

THEOREM (BIRKHOFF AND SMALE). Let $f: M \to M$ be a diffeomorphism. If f has a transverse homoclinic point q, then f has a periodic point in any neighborhood of q.

This theorem was proved by Birkhoff [1] for diffeomorphisms of the plane and then generalized by Smale [2]. But Smale's proof involves a long argument in which he constructs a Bernoulli shift on an invariant Cantor set. The proof given here uses only the local theory for a hyperbolic fixed point of a diffeomorphism.

We recall some definitions. A fixed point p is called hyperbolic if $T_p f: T_p M \to T_p M$ has no eigenvalues of modulus one. The stable manifold $W^s(p)$ of a hyperbolic fixed point p is the set of $x \in M$ such that $f^n(x) \to p$ as $n \to \infty$. The unstable manifold $W^u(p)$ is the stable manifold of f^{-1} at p. A point $q \neq p$, where $W^s(p)$ and $W^u(p)$ intersects transversely, is called a transverse homoclinic point.

PROOF. Let p and q be as above. $W^{s}(p)$ and $W^{u}(p)$ intersect transversely at p, so we can find U, a neighborhood of p, and a diffeomorphism $\phi: B^{u} \times B^{s} \to U$, where $B^{u} \subset W^{u}(p)$ and $B^{s} \subset W^{s}(p)$ are open balls about p so that $\phi(B^{u} \times \{p\}) = B^{u}$ and $\phi(\{p\} \times B^{s}) = B^{s}$. Let $\pi_{1}: U \to B^{u}$ and $\pi_{2}: U \to B^{s}$ be the induced projections. The λ -lemma tells us that any disk transverse to the stable (resp. unstable) manifold becomes arbitrarily C^{1} close to some disk in the unstable (stable) manifold under forward (backward) iteration (see Palis [4]). Thus for any neighborhood V of q we

Received by the editors May 18, 1984.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 58F20; Secondary 58F13.

Key words and phrases. Birkhoff-Smale theorem, homoclinic point, periodic point, dynamical systems.

can find $D^{u} \subset B^{u}$ and $D^{s} \subset B^{s}$, closed neighborhoods of p and positive integers m and n with the following properties:

(i) Let $N = \phi(D^u \times D^s)$; then C, the connected component of $f^m(N) \cap f^{-n}(N)$ containing q, is contained in V.

(ii) For any $(u, s) \in D^u \times D^s$, $f^m(\phi(D^u \times \{s\})) \cap f^{-n}(\phi(\{u\} \times D^s)) \cap C$ consists of exactly one point, and $f^m(\phi(D^u \times \{s\}))$ and $f^{-n}(\phi(\{u\} \times D^s))$ intersects transversely at this point.

The latter condition ensures that the maps $g_1: f^{-m}(C) \to N$ and $g_2: f^n(C) \to N$ given by

$$g_1(\phi(u, s)) = \phi(\pi_1(f^{m+n}(\phi(u, s))), s), g_2(\phi(u, s)) = \phi(u, \pi_2(f^{-m-n}(\phi(u, s))))$$

are bijections. The g_i 's have compact domain and Hausdorff range; hence, they are homeomorphisms. Define $h: N \to N$ by

$$h(\phi(u,s)) = \phi(\pi_1(g_1^{-1}(\phi(u,s))), \pi_2(g_2^{-1}(\phi(u,s)))).$$

The Brouwer fixed point theorem gives a fixed point x_0 of h. Clearly x_0 is also a fixed point of g_1 and g_2 . Finally, note that $f^{m+n} = g_2^{-1} \circ g_1$, so x_0 is a periodic point of f and $f^m(x_0) \in V$.

ACKNOWLEDGEMENT. The author would like to thank Professor Smale for his comments and encouragement.

References

1. G. D. Birkhoff, Nouvelles recherches sur les systèmes dynamiques, Collected Mathematical Papers, Vol. 2, Amer. Math. Soc., Providence, R. I., 1950, pp. 530-662.

2. S. Smale, *Diffeomorphisms with many periodic points*, Differential and Combinatorial Topology, Princeton Univ. Press, Princeton, N. J., 1965, pp. 63-80.

3. _____, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747-817.

4. J. Palis, On Morse-Smale dynamical systems, Topology 8 (1969), 385-405.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 94720