Sheaves of noncommutative algebras and the Beilinson-Bernstein equivalence of categories
HTML articles powered by AMS MathViewer
- by T. J. Hodges and S. P. Smith
- Proc. Amer. Math. Soc. 93 (1985), 379-386
- DOI: https://doi.org/10.1090/S0002-9939-1985-0773985-3
- PDF | Request permission
Abstract:
Let $X$ be an irreducible algebraic variety defined over a field $k$, let $\mathcal {R}$ be a sheaf of (noncommutative) noetherian $k$-algebras on $X$ containing the sheaf of regular functions $\mathcal {O}$ and let $R$ be the ring of global sections. We show that under quite reasonable abstract hypotheses (concerning the existence of a faithfully flat overring of $R$ obtained from the local sections of $\mathcal {R}$) there is an equivalence between the category of $R$-modules and the category of sheaves of $\mathcal {R}$-modules which are quasicoherent as $\mathcal {O}$-modules. This shows that the equivalence of categories established by Beilinson and Bernstein as the first step in their proof of the KazhdanLusztig conjectures (where $R$ is a primitive factor ring of the enveloping algebra of a complex semisimple Lie algebra, and $\mathcal {R}$ is a sheaf of twisted differential operators on a generalised flag variety) is valid for more fundamental reasons than is apparent from their work.References
- Alexandre BeÄlinson and Joseph Bernstein, Localisation de $g$-modules, C. R. Acad. Sci. Paris SĂ©r. I Math. 292 (1981), no. 1, 15–18 (French, with English summary). MR 610137
- J. N. Bernstein and S. I. Gel′fand, Tensor products of finite- and infinite-dimensional representations of semisimple Lie algebras, Compositio Math. 41 (1980), no. 2, 245–285. MR 581584
- Pierre Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323–448 (French). MR 232821
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157 T. J. Hodges and S. P. Smith, Differential operators on the flag variety and the Conze embedding (preprint).
- A. Joseph and J. T. Stafford, Modules of ${\mathfrak {k}}$-finite vectors over semisimple Lie algebras, Proc. London Math. Soc. (3) 49 (1984), no. 2, 361–384. MR 748996, DOI 10.1112/plms/s3-49.2.361
- Bo Stenström, Rings of quotients, Die Grundlehren der mathematischen Wissenschaften, Band 217, Springer-Verlag, New York-Heidelberg, 1975. An introduction to methods of ring theory. MR 0389953
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 93 (1985), 379-386
- MSC: Primary 17B35; Secondary 14A20, 16A63, 22E46, 57S25
- DOI: https://doi.org/10.1090/S0002-9939-1985-0773985-3
- MathSciNet review: 773985