Embeddings into simple free products
HTML articles powered by AMS MathViewer
- by David Meier
- Proc. Amer. Math. Soc. 93 (1985), 387-392
- DOI: https://doi.org/10.1090/S0002-9939-1985-0773986-5
- PDF | Request permission
Abstract:
We prove that a countable group $G$ can be embedded into a two-generator simple group $S$ which is an amalgamated free product of groups $G * {F_1}$ and $F$, where $F$ and ${F_1}$ are free groups on two generators. $S$ is also the product of two commuting free subgroups. If $G$ has solvable word problem, then we can construct a recursive presentation for $S$.References
- Ruth Camm, Simple free products, J. London Math. Soc. 28 (1953), 66–76. MR 52420, DOI 10.1112/jlms/s1-28.1.66
- William W. Boone and Graham Higman, An algebraic characterization of groups with soluble word problem, J. Austral. Math. Soc. 18 (1974), 41–53. Collection of articles dedicated to the memory of Hanna Neumann, IX. MR 0357625
- A. P. Gorjuškin, Imbedding of countable groups in $2$-generator simple groups, Mat. Zametki 16 (1974), 231–235 (Russian). MR 382456
- Roger C. Lyndon and Paul E. Schupp, Combinatorial group theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 89, Springer-Verlag, Berlin-New York, 1977. MR 0577064 W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory, Wiley, New York, 1966.
- David Meier, A note on simple free products, Houston J. Math. 9 (1983), no. 4, 501–504. MR 732241
- Paul E. Schupp, Embeddings into simple groups, J. London Math. Soc. (2) 13 (1976), no. 1, 90–94. MR 401932, DOI 10.1112/jlms/s2-13.1.90
- Richard J. Thompson, Embeddings into finitely generated simple groups which preserve the word problem, Word problems, II (Conf. on Decision Problems in Algebra, Oxford, 1976), Studies in Logic and the Foundations of Mathematics, vol. 95, North-Holland, Amsterdam-New York, 1980, pp. 401–441. MR 579955
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 93 (1985), 387-392
- MSC: Primary 20E06; Secondary 20E32, 20F10
- DOI: https://doi.org/10.1090/S0002-9939-1985-0773986-5
- MathSciNet review: 773986