On Scott modules and $p$-permutation modules: an approach through the Brauer morphism
HTML articles powered by AMS MathViewer
- by Michel Broué
- Proc. Amer. Math. Soc. 93 (1985), 401-408
- DOI: https://doi.org/10.1090/S0002-9939-1985-0773988-9
- PDF | Request permission
Abstract:
Following Lluis Puig we give a presentation of the theory of $p$-permutation modules (also called "trivial source modules") by a systematic use of the generalized Brauer morphism.References
- Michel Broué, Brauer coefficients of $p$-subgroups associated with a $p$-block of a finite group, J. Algebra 56 (1979), no. 2, 365–383. MR 528581, DOI 10.1016/0021-8693(79)90343-0
- Michel Broué and Lluís Puig, Characters and local structure in $G$-algebras, J. Algebra 63 (1980), no. 2, 306–317. MR 570714, DOI 10.1016/0021-8693(80)90074-5
- David W. Burry, Scott modules and lower defect groups, Comm. Algebra 10 (1982), no. 17, 1855–1872. MR 674696, DOI 10.1080/00927878208822808
- Walter Feit, The representation theory of finite groups, North-Holland Mathematical Library, vol. 25, North-Holland Publishing Co., Amsterdam-New York, 1982. MR 661045
- James A. Green, Some remarks on defect groups, Math. Z. 107 (1968), 133–150. MR 233901, DOI 10.1007/BF01111026
- David W. Burry, Scott modules and lower defect groups, Comm. Algebra 10 (1982), no. 17, 1855–1872. MR 674696, DOI 10.1080/00927878208822808
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 93 (1985), 401-408
- MSC: Primary 20C11; Secondary 20C05
- DOI: https://doi.org/10.1090/S0002-9939-1985-0773988-9
- MathSciNet review: 773988