Asymptotics for solutions of smooth recurrence equations
HTML articles powered by AMS MathViewer
- by Attila Máté and Paul Nevai
- Proc. Amer. Math. Soc. 93 (1985), 423-429
- DOI: https://doi.org/10.1090/S0002-9939-1985-0773995-6
- PDF | Request permission
Abstract:
It is shown that convergent solutions of a smooth recurrence equation whose gradient satisfies a certain "nonunimodularity" condition can be approximated by an asymptotic expansion. The lemma used to show this has some features in common with Poincaré’s theorem on homogeneous linear recurrence equations. An application to the study of polynomials orthogonal with respect to the weight function $\exp ( - {x^6}/6)$ is given.References
- Géza Freud, On the coefficients in the recursion formulae of orthogonal polynomials, Proc. Roy. Irish Acad. Sect. A 76 (1976), no. 1, 1–6. MR 419895
- Peter Henrici, Applied and computational complex analysis. Vol. 2, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1977. Special functions—integral transforms—asymptotics—continued fractions. MR 0453984
- John S. Lew and Donald A. Quarles Jr., Nonnegative solutions of a nonlinear recurrence, J. Approx. Theory 38 (1983), no. 4, 357–379. MR 711463, DOI 10.1016/0021-9045(83)90154-5
- L. M. Milne-Thomson, The Calculus of Finite Differences, Macmillan & Co., Ltd., London, 1951. MR 0043339
- Paul Nevai, Orthogonal polynomials associated with $\textrm {exp}(-x^{4})$, Second Edmonton conference on approximation theory (Edmonton, Alta., 1982) CMS Conf. Proc., vol. 3, Amer. Math. Soc., Providence, RI, 1983, pp. 263–285. MR 729336, DOI 10.1137/0514048
- Paul Nevai, Asymptotics for orthogonal polynomials associated with $\textrm {exp}(-x^{4})$, SIAM J. Math. Anal. 15 (1984), no. 6, 1177–1187. MR 762973, DOI 10.1137/0515092 N. E. Nörlund, Vorlesungen über Differenzenrechnung, Springer-Verlag, Berlin, 1924.
- H. Poincare, Sur les Equations Lineaires aux Differentielles Ordinaires et aux Differences Finies, Amer. J. Math. 7 (1885), no. 3, 203–258 (French). MR 1505385, DOI 10.2307/2369270
- Attila Máté, Paul Nevai, and Thomas Zaslavsky, Asymptotic expansions of ratios of coefficients of orthogonal polynomials with exponential weights, Trans. Amer. Math. Soc. 287 (1985), no. 2, 495–505. MR 768722, DOI 10.1090/S0002-9947-1985-0768722-7
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 93 (1985), 423-429
- MSC: Primary 39A10; Secondary 41A60, 42C05, 58F08
- DOI: https://doi.org/10.1090/S0002-9939-1985-0773995-6
- MathSciNet review: 773995