ENTROPY INCREASE AS A CONSEQUENCE
OF MEASURE INVARIANCE

C. C. BROWN

Abstract. An inequality, used in statistical mechanics for proving that entropy does
not decrease, is shown to hold for general σ-finite measure spaces. We comment
briefly on the corresponding Hilbert space result.

Let \((\Omega, \mathcal{A}, \mu)\) be a σ-finite measure space, \(\mathcal{F}_\mu\) the family of \(\mu\)-absolutely con-
tinuous measures on \(\mathcal{A}\), and \(T: \mathcal{F}_\mu \to \mathcal{F}_\mu\) a positive linear and monotone continuous
mapping; i.e. \(\sup, T(\nu_j) = T(\sup, \nu_j)\) for every monotone sequence, \(\nu_1 \leq \nu_2 \leq \cdots\), of
elements of \(\mathcal{F}_\mu\). If \(T\) preserves total measure, then every probability measure in \(\mathcal{F}_\mu\)
maps into a probability measure under \(T\). If \(\rho\) is a probability density with respect to
\((\Omega, \mathcal{A}, \mu)\), then the image of the corresponding probability distribution under \(T\) will
have a density \(\rho'\). A question of some interest in statistical mechanics concerns the
behavior of integrals of the form \(\int \phi(\rho(\omega)) \mu(d\omega)\). Suppose \(\phi\) is a convex function
defined in the nonnegative reals. Under what conditions is the inequality

\[
\int \phi(\rho(\omega)) \mu(d\omega) \geq \int \phi(\rho'(\omega)) \mu(d\omega)
\]

valid? The main case of interest for statistical mechanics is where \(\phi(x) = x \log x\)
\((x \geq 0)\), in which the integral corresponds to the Gibbs entropy [13].

A sufficient condition for the validity of the inequality is essentially the invariance
of \(\mu\) under \(T\). For finite \(\mu\) on a countable space \(\Omega\), this result can be found in the
book of Penrose [12]. The result appears to be attributable to M. J. Klein [10]. A
similar result has also been proved for finite \(\mu\) on a compact \(\Omega\) by J. Voigt [15,
Lemma 1.4].

Using an argument that is well known in the theory of probability in connection
with the representation of conditional expectations, it is possible to prove the
inequality for general σ-finite spaces. Slightly more generally, let \((\Omega, \mathcal{A}, \mu)\) and
\((\overline{\Omega}, \overline{\mathcal{A}}, \overline{\mu})\) be σ-finite measure spaces, and \(T\) a monotone continuous positive linear
mapping from \(\mathcal{F}_\mu\) into the set of measures on \(\overline{\mathcal{A}}\). If \(T\mu = \overline{\mu}\), then \(Tv\) is \(\overline{\mu}\)-absolutely
continuous for every \(\nu \in \mathcal{F}_\mu\). If \(Tv(\overline{\Omega}) = \nu(\overline{\Omega})\) for every \(\nu \in \mathcal{F}_\mu\), then let \(\rho\) be a
probability density for \(\nu\) and \(\rho'\) a probability density for \(Tv\).
Theorem. For the mapping T as above, let ρ and ρ' be the probability densities just defined, and let ϕ be a finite-valued convex function defined on $[0, \infty)$. If the integral, $H(\rho) := \int \phi(\rho(\omega)) \mu(d\omega)$, exists and is less than infinity, then the integral, $\overline{H}(\rho') := \int \phi(\rho'(\bar{\omega})) \bar{\mu}(d\bar{\omega})$, exists and is less than infinity. If both integrals exist in the extended sense, then $H(\rho) \geq \overline{H}(\rho')$.

Proof. Let \mathcal{L} be the set of extended valued nonnegative measurable functions defined with respect to \mathcal{A}, and define \mathcal{D} correspondingly for (Ω, \mathcal{A}). For $g \in \mathcal{L}$ let $\nu_g \in \bar{\mathcal{L}}_\mu$ be the measure on \mathcal{A} having the density g with respect to μ. Denoting by \mathcal{L}_μ the equivalence classes mod μ of elements of \mathcal{L}, the correspondence $g \mapsto dT(v)/d\mu$ defines a positive linear and monotone continuous mapping T' from \mathcal{L}_μ into $\bar{\mathcal{L}}_\mu$, the set of $\bar{\mu}$-equivalence classes in \mathcal{D}. T' is also a mapping of the same type from \mathcal{L}_μ into $\bar{\mathcal{L}}_\mu$. For $E \in \mathcal{A}$ let I_E be the indicator function of E. $T'(I_E)$ is represented by a measurable function of $\bar{\omega} \in \bar{\Omega}$, and $I_\Omega \in T'(I_\Omega)$. Using this fact and an argument that is nearly the same as that in Breiman [2, Chapter 4] or Doob [3, Chapter I] for proving the existence of conditional probability kernels, if f is a measurable mapping from Ω into a Borel space (B, \mathcal{B}), then we can construct a stochastic kernel K_f from $(\bar{\Omega}, \bar{\mathcal{A}})$ to (B, \mathcal{B}) with the property

$$ K_f(F, \cdot) \in T'(I_{f \circ F}) \quad (F \in \mathcal{B}). $$

As in the conditional expectation case, one has

$$ \int \phi(y) K_f(dy, \cdot) \in T'(\psi \circ f) $$

for every nonnegative extended valued measurable function ϕ defined on (B, \mathcal{B}). Consequently,

$$ \rho' := \int |y| K_\rho(dy, \cdot) $$

is a density for $T_{\rho'}$. Since ρ' is $\bar{\mu}$-almost everywhere finite, we can suppose that K_ρ has been so chosen that ρ' is everywhere finite. Thus $\int |y| K_\rho(dy, \cdot)$ is finite valued and the conditions for an application of Jensen’s inequality hold. For the convex function $\phi_+(y) := \max[\phi(y), 0]$ ($y \in [0, \infty)$), one has

$$ \phi_+(\rho') = \phi_+ \left(\int y K_\rho(dy, \cdot) \right) \leq \int \phi_+(y) K_\rho(dy, \cdot) $$

and

$$ \int \phi_+(\rho') \bar{\mu}(d\bar{\omega}) \leq \int \left(\int \phi_+(y) K_\rho(dy, \bar{\omega}) \right) \bar{\mu}(d\bar{\omega}) $$

$$ = \int T'(\phi_+ \circ \rho) \bar{\mu}(d\bar{\omega}) = \int \phi_+(\rho) \mu(d\omega). $$

Repeating this argument with ϕ in place of ϕ_+, a proof of the theorem as stated is only a matter of technical details.

For a classical mechanical system, let $(\Omega, \mathcal{A}, \mu)$ be the phase space with the μ-preserving family $\{T_t\}_{t \in \mathbb{R}}$ of one-to-one surjective transformations $T_t: \Omega \to \Omega$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
representing the system flow in Ω. It is often possible to assume that μ is σ-finite on the σ-algebra \mathcal{T} of invariant measurable sets in Ω (see, for example, [9]). It follows [9] that every initial probability density ρ_0 in $(\Omega, \mathcal{A}, \mu)$ has a time average which, in any reasonable definition of approach to equilibrium with time, is equal almost everywhere to the equilibrium density ρ_∞ corresponding to ρ_0. The density ρ_∞ is a conditional expectation $E(\rho_0|\mathcal{T})$ of ρ_0 under μ with respect to \mathcal{T}. Because μ is σ-finite on \mathcal{T}, $E(f|\mathcal{T})$ is also defined for every nonnegative measurable extended valued function f on Ω. The time average is therefore a restriction of the mapping T' from $\mathcal{L} \to \mathcal{L}_\mu$ which derives from the mapping $T: \mathcal{F}_\mu \to \mathcal{F}_\mu$ given by $\nu_g \to \nu_{E(g|\mathcal{T})}$ ($g \in \mathcal{L}$). This mapping T has the properties demanded by the theorem and is the only such mapping specializing to the average value map.

For quantum mechanical systems, a corresponding result has been proved by G. Lindblad [11]. The following easy consequence of Jensen's inequality seems to simplify Lindblad's proof considerably.

Theorem. Let $U \subset \mathbb{R}$ be an interval, ϕ a bounded convex function on U, A_1, A_2, \ldots nonegative selfadjoint operators in a separable Hilbert space \mathcal{H}, with $A_1 + A_2 + \cdots = I =$ Identity operator, and x_1, x_2, \ldots elements of U. If $\sum_a |x_a| \text{tr} A_a < \infty$ then $\phi(\sum_a x_a A_a)$ is defined as a bounded self adjoint operator in \mathcal{H}. If, furthermore, $\text{tr}[\sum_a \phi(x_a) A_a]$ exists less than infinity, then

$$\text{tr} \left[\phi \left(\sum_a x_a A_a \right) \right] \leq \text{tr} \left[\sum_a \phi(x_a) A_a \right].$$

References

Mathematics Institut, Freie Universität Berlin, Arnimallee 2-6, Berlin 33, West Germany