Pseudo-Pontrjagin classes
HTML articles powered by AMS MathViewer
- by Yasuo Matsushita
- Proc. Amer. Math. Soc. 93 (1985), 521-524
- DOI: https://doi.org/10.1090/S0002-9939-1985-0774016-1
- PDF | Request permission
Abstract:
For a pseudo-Riemannian manifold we can construct a pseudo-Pontrjagin class as represented by a certain ad$({\text {S}}{{\text {O}}_0}(p,q))$-invariant form on the manifold so that it coincides with the Pontrjagin class of the manifold.References
- Shiing-shen Chern, Pseudo-Riemannian geometry and the Gauss-Bonnet formula, An. Acad. Brasil. Ci. 35 (1963), 17–26. MR 155261
- Yasuo Matsushita, Thorpe-Hitchin inequality for compact Einstein $4$-manifolds of metric signature $(++–)$ and the generalized Hirzebruch index formula, J. Math. Phys. 24 (1983), no. 1, 36–40. MR 690367, DOI 10.1063/1.525599
- Norman Steenrod, The Topology of Fibre Bundles, Princeton Mathematical Series, vol. 14, Princeton University Press, Princeton, N. J., 1951. MR 0039258
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 93 (1985), 521-524
- MSC: Primary 53C50; Secondary 53C05, 57R20
- DOI: https://doi.org/10.1090/S0002-9939-1985-0774016-1
- MathSciNet review: 774016