Unoriented branched coverings arising from group actions
HTML articles powered by AMS MathViewer
- by Virginia R. Young
- Proc. Amer. Math. Soc. 93 (1985), 525-531
- DOI: https://doi.org/10.1090/S0002-9939-1985-0774017-3
- PDF | Request permission
Abstract:
For an unbranched covering $f:{M^n} \to {N^n},[M] = (\deg f)[N]$ in unoriented cobordism ${\mathfrak {N}_*}$. Thus, in general, if $f:M \to N$ is a branched covering, then $[M] - (\deg f)[N]$ depends upon the branching behavior. In this note we describe the ideal ${I_G}$ of unoriented cobordism classes $[{M^n}] - |G|[{M^n}/G]$, where $G$ is a finite group acting on $M$ so that $M \to M/G$ is a $|G|$-fold smooth branched covering of closed smooth manifolds.References
- Neal Brand, Necessary conditions for the existence of branched coverings, Invent. Math. 54 (1979), no. 1, 1–10. MR 549541, DOI 10.1007/BF01391172
- R. Paul Beem, On the bordism of almost free $Z_{2k}$ actions, Trans. Amer. Math. Soc. 225 (1977), 83–105. MR 425991, DOI 10.1090/S0002-9947-1977-0425991-6
- Frank L. Capobianco, Cobordism classes represented by fiberings with fiber $\textbf {R}P(2k+1)$, Michigan Math. J. 24 (1977), no. 2, 185–192. MR 461529
- P. E. Conner and E. E. Floyd, Differentiable periodic maps, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 33, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1964. MR 0176478
- R. E. Stong, Branched coverings. I, Trans. Amer. Math. Soc. 276 (1983), no. 1, 375–402. MR 684516, DOI 10.1090/S0002-9947-1983-0684516-3
- R. E. Stong, On fibering of cobordism classes, Trans. Amer. Math. Soc. 178 (1973), 431–447. MR 315733, DOI 10.1090/S0002-9947-1973-0315733-3
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 93 (1985), 525-531
- MSC: Primary 57S17; Secondary 57R75
- DOI: https://doi.org/10.1090/S0002-9939-1985-0774017-3
- MathSciNet review: 774017