Essential versus $\#$-spectrum for smooth diffeomorphisms
HTML articles powered by AMS MathViewer
- by Russell B. Walker
- Proc. Amer. Math. Soc. 93 (1985), 532-538
- DOI: https://doi.org/10.1090/S0002-9939-1985-0774018-5
- PDF | Request permission
Abstract:
J. Robbin conjectures in his 1972 survey article (Bull. Amer. Math. Soc. 78, 923-952) that the "essential" and $\#$-spectra are identical for all ${C^1}$-diffeomorphisms. If so, the stability conjecture of S. Smale follows. A $\#$-spectrum may be attached to any orbit or invariant set and is a generalization of the set of eigenvalues of $Tf$ at a fixed point. The essential spectrum is the closure of this spectrum, restricted to the periodic set of $f$. So Robbin’s conjecture meant that the periodic orbits carry the growth rate behavior of their closure. A counterexample is constructed and other conjectures made.References
- Carmen Chicone and R. C. Swanson, Spectral theory for linearizations of dynamical systems, J. Differential Equations 40 (1981), no. 2, 155–167. MR 619131, DOI 10.1016/0022-0396(81)90015-2
- H. R. Dowson, Spectral theory of linear operators, London Mathematical Society Monographs, vol. 12, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1978. MR 511427
- John Franks, Necessary conditions for stability of diffeomorphisms, Trans. Amer. Math. Soc. 158 (1971), 301–308. MR 283812, DOI 10.1090/S0002-9947-1971-0283812-3
- M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant manifolds, Lecture Notes in Mathematics, Vol. 583, Springer-Verlag, Berlin-New York, 1977. MR 0501173
- Morris W. Hirsch and Stephen Smale, Differential equations, dynamical systems, and linear algebra, Pure and Applied Mathematics, Vol. 60, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1974. MR 0486784
- Russell A. Johnson, Analyticity of spectral subbundles, J. Differential Equations 35 (1980), no. 3, 366–387. MR 563387, DOI 10.1016/0022-0396(80)90034-0
- Ivan Kupka, Contribution à la théorie des champs génériques, Contributions to Differential Equations 2 (1963), 457–484 (French). MR 165536
- Jacob Palis Jr. and Welington de Melo, Geometric theory of dynamical systems, Springer-Verlag, New York-Berlin, 1982. An introduction; Translated from the Portuguese by A. K. Manning. MR 669541
- M. M. Peixoto, On an approximation theorem of Kupka and Smale, J. Differential Equations 3 (1967), 214–227. MR 209602, DOI 10.1016/0022-0396(67)90026-5
- Charles C. Pugh, The closing lemma, Amer. J. Math. 89 (1967), 956–1009. MR 226669, DOI 10.2307/2373413
- Charles C. Pugh, An improved closing lemma and a general density theorem, Amer. J. Math. 89 (1967), 1010–1021. MR 226670, DOI 10.2307/2373414
- J. W. Robbin, Topological conjugacy and structural stability for discrete dynamical systems, Bull. Amer. Math. Soc. 78 (1972), 923–952. MR 312529, DOI 10.1090/S0002-9904-1972-13058-1
- Robert J. Sacker and George R. Sell, A spectral theory for linear differential systems, J. Differential Equations 27 (1978), no. 3, 320–358. MR 501182, DOI 10.1016/0022-0396(78)90057-8
- James F. Selgrade, Isolated invariant sets for flows on vector bundles, Trans. Amer. Math. Soc. 203 (1975), 359–390. MR 368080, DOI 10.1090/S0002-9947-1975-0368080-X
- S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747–817. MR 228014, DOI 10.1090/S0002-9904-1967-11798-1
- Ivan Kupka, Contribution à la théorie des champs génériques, Contributions to Differential Equations 2 (1963), 457–484 (French). MR 165536
- R. C. Swanson, The spectrum of vector bundle flows with invariant subbundles, Proc. Amer. Math. Soc. 83 (1981), no. 1, 141–145. MR 620000, DOI 10.1090/S0002-9939-1981-0620000-4
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 93 (1985), 532-538
- MSC: Primary 58F15; Secondary 58F19
- DOI: https://doi.org/10.1090/S0002-9939-1985-0774018-5
- MathSciNet review: 774018