On $C^ \ast$-embedding in $\beta \textbf {N}$ and the continuum hypothesis
HTML articles powered by AMS MathViewer
- by Alan S. Dow and R. Grant Woods
- Proc. Amer. Math. Soc. 93 (1985), 549-554
- DOI: https://doi.org/10.1090/S0002-9939-1985-0774021-5
- PDF | Request permission
Abstract:
Let $\beta {\mathbf {N}}$ denote the Stone-Čech compactification of the natural numbers ${\mathbf {N}}$ with the discrete topology. It is shown that the continuum hypothesis holds iff for each pair $X$ and $Y$ of homeomorphic subspaces of $\beta {\mathbf {N}}$, $X$ is ${C^*}$-embedded in $\beta {\mathbf {N}}$ iff $Y$ is. Related questions concerning ${C^*}$-embedded subsets of $\beta {\mathbf {N}}$ are investigated assuming the hypothesis ${2^{{\aleph _0}}} < {2^{{\aleph _1}}}$.References
- C. E. Aull, A generalization of a theorem of Aquaro, Bull. Austral. Math. Soc. 9 (1973), 105–108. MR 372817, DOI 10.1017/S0004972700042933
- Charles E. Aull, Absolute $C^{\ast }$-embedding of $P$-spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 26 (1978), no. 9-10, 831–836 (English, with Russian summary). MR 518988
- Bohuslav Balcar, Petr Simon, and Peter Vojtáš, Refinement properties and extensions of filters in Boolean algebras, Trans. Amer. Math. Soc. 267 (1981), no. 1, 265–283. MR 621987, DOI 10.1090/S0002-9947-1981-0621987-0
- Robert L. Blair, Closed-completeness in spaces with weak covering properties, Set-theoretic topology (Papers, Inst. Medicine and Math., Ohio Univ., Athens, Ohio, 1975–1976) Academic Press, New York, 1977, pp. 17–45. MR 0464153
- W. W. Comfort and Anthony W. Hager, Estimates for the number of real-valued continuous functions, Trans. Amer. Math. Soc. 150 (1970), 619–631. MR 263016, DOI 10.1090/S0002-9947-1970-0263016-X
- Eric K. van Douwen, A basically disconnected normal space $\Phi$ with $\beta \Phi -\Phi =1$, Canadian J. Math. 31 (1979), no. 5, 911–914. MR 546947, DOI 10.4153/CJM-1979-086-3
- Alan Dow, CH and open subspaces of $F$-spaces, Proc. Amer. Math. Soc. 89 (1983), no. 2, 341–345. MR 712648, DOI 10.1090/S0002-9939-1983-0712648-5
- Alan Dow and Ortwin Förster, Absolute $C^{\ast }$-embedding of $F$-spaces, Pacific J. Math. 98 (1982), no. 1, 63–71. MR 644938
- Alan Dow and Jan van Mill, An extremally disconnected Dowker space, Proc. Amer. Math. Soc. 86 (1982), no. 4, 669–672. MR 674103, DOI 10.1090/S0002-9939-1982-0674103-X B. A. Efimov, Extremally disconnected compact spaces and absolutes, Trans. Moscow Math. Soc. 23 (1970), 243-285.
- Leonard Gillman and Meyer Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0116199
- R. Levy and M. D. Rice, Normal $P$-spaces and the $G_{\delta }$-topology, Colloq. Math. 44 (1981), no. 2, 227–240 (1982). MR 652582, DOI 10.4064/cm-44-2-227-240
- Paul R. Meyer, Function spaces and the Aleksandrov-Urysohn conjecture, Ann. Mat. Pura Appl. (4) 86 (1970), 25–29. MR 282327, DOI 10.1007/BF02415705
- Stelios Negrepontis, On the product of $F$-spaces, Trans. Amer. Math. Soc. 136 (1969), 339–346. MR 234407, DOI 10.1090/S0002-9947-1969-0234407-X
- Russell C. Walker, The Stone-Čech compactification, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 83, Springer-Verlag, New York-Berlin, 1974. MR 0380698
- R. Grant Woods, Characterizations of some $C^*$-embedded subspaces of $\beta \b N$, Pacific J. Math. 65 (1976), no. 2, 573–579. MR 425905
- Phillip Zenor, Certain subsets of products of $\theta$-refinable spaces are realcompact, Proc. Amer. Math. Soc. 40 (1973), 612–614. MR 322812, DOI 10.1090/S0002-9939-1973-0322812-9
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 93 (1985), 549-554
- MSC: Primary 54C45; Secondary 03E50, 54A35, 54D35
- DOI: https://doi.org/10.1090/S0002-9939-1985-0774021-5
- MathSciNet review: 774021