The cofibre of the transfer map
HTML articles powered by AMS MathViewer
- by Larry W. Cusick
- Proc. Amer. Math. Soc. 93 (1985), 561-566
- DOI: https://doi.org/10.1090/S0002-9939-1985-0774023-9
- PDF | Request permission
Abstract:
Suppose a finite group $G$ acts freely on a finite complex $X$ with orbit space $B$. The cofibre $\mathcal {C}$ of the transfer map, is defined by the cofibre sequence $\Sigma ^0 B_+ \stackrel {\mathrm {tr}}{\rightarrow } \Sigma ^0 X_+ \rightarrow \mathcal {C}$. We show that there is a spectral sequence $H_G^p(X;\tilde M \otimes {h^q}) \Rightarrow {h^{p + q}}(\mathcal {C})$ for any cohomology theory ${h^ * }$, where $\tilde M$ is the reduced regular ${\mathbf {Z}}$-representation for $G$. As a special case we prove that ${H^ * }(\mathcal {C};{\mathbf {Z}}_2)$ is a free ${H^ * }(B;{{\mathbf {Z}}_2})$-module on a zero-dimensional class for any two-fold cover.References
- J. F. Adams, Infinite loop space theory, Ann. of Math. Stud., Princeton Univ. Press, Princeton, N. J., 1978.
- M. F. Atiyah, Characters and cohomology of finite groups, Inst. Hautes Études Sci. Publ. Math. 9 (1961), 23–64. MR 148722
- J. C. Becker and D. H. Gottlieb, The transfer map and fiber bundles, Topology 14 (1975), 1–12. MR 377873, DOI 10.1016/0040-9383(75)90029-4
- Eldon Dyer, Cohomology theories, Mathematics Lecture Note Series, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0268883
- John Milnor, Construction of universal bundles. II, Ann. of Math. (2) 63 (1956), 430–436. MR 77932, DOI 10.2307/1970012
- George W. Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics, vol. 61, Springer-Verlag, New York-Berlin, 1978. MR 516508
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 93 (1985), 561-566
- MSC: Primary 55R20; Secondary 55R12, 57S17
- DOI: https://doi.org/10.1090/S0002-9939-1985-0774023-9
- MathSciNet review: 774023