THE CONVEXITY OF A DOMAIN AND THE SUPERHARMONICITY OF THE SIGNED DISTANCE FUNCTION

D. H. ARMITAGE AND Ü. KURAN

Abstract. Let D be a domain in \mathbb{R}^N with nonempty boundary ∂D and let u be the signed distance function from ∂D, i.e. $u = \pm \text{dist}$ according as we are in or outside \overline{D}. We prove that, for any $N \geq 2$, u is superharmonic in \mathbb{R}^N if and only if D is convex. When $N = 2$, this criterion requires the superharmonicity of u in D only.

1. Throughout this paper D will denote a proper subdomain of the Euclidean space \mathbb{R}^N, where $N \geq 2$. Thus the boundary ∂D of D in \mathbb{R}^N is not empty and we can define the distance function d from ∂D. The signed distance function u in \mathbb{R}^N is defined by

$$u = \begin{cases} d & \text{in } \overline{D}, \\ -d & \text{in } D^\prime, \end{cases}$$

where \overline{D} is the closure of D in \mathbb{R}^N and $D^\prime = \mathbb{R}^N \setminus \overline{D}$.

Our main result is the following

Theorem 1. The function u is superharmonic in \mathbb{R}^N if and only if D is convex.

The “if” part of Theorem 1 must be known, at least tacitly; cf. Fuchs [1, p. 11]. For completeness we sketch a proof. For every support hyperplane H of \overline{D} let u_H be the signed distance function from H such that $u_H > 0$ in D and u_H is harmonic in \mathbb{R}^N. Then $u = \inf_H u_H$ and it follows that u is superharmonic (in fact, u is concave) in \mathbb{R}^N, since the u_H are all harmonic and $u \in C(\mathbb{R}^N)$. The proof of the “only if” part of Theorem 1 (cf. §3) is more involved and requires two preliminary lemmas (§2).

We note that, for example, if D is the punctured ball $D = \{X \in \mathbb{R}^N: 0 < r = ||X|| < 1\}$, then u is superharmonic in D^\prime but not in D. With this motivation we now state

Theorem 2. If D is a planar domain and d is superharmonic in D, then D is convex.

In higher dimensions, neither D nor \overline{D} need be convex.

Theorem 3. Let F be a proper closed subset of \mathbb{R}^N, where $N \geq 2$, and let d be the distance from ∂F. Then d is subharmonic in F^\prime if and only if F is convex.

The $N = 2$ and $N \geq 3$ cases of Theorem 2 are proved in §§4 and 5, Theorem 3 in §3.
2. **Lemma 1.** Let \(D \subset \mathbb{R}^N \) be such that \(D \neq \text{int}(\overline{D}) \). Then \(u \) is not superharmonic in \(\mathbb{R}^N \).

We denote the mean-value of \(u \) on \(S(\mathbf{X}_0, r) = \{ \mathbf{X} : ||\mathbf{X} - \mathbf{X}_0|| = r \} \) by \(M(u, \mathbf{X}_0, r) \).

To prove Lemma 1, choose \(\mathbf{X}_0 \in \partial D \) and \(r_0 > 0 \) so that \(B(\mathbf{X}_0, r_0) = \{ \mathbf{X} : ||\mathbf{X} - \mathbf{X}_0|| < r_0 \} \subset \text{int}(\overline{D}) \subset \overline{D} \). Clearly \(M(u, \mathbf{X}_0, r) > 0 \) if \(0 < r < r_0 \); thus if \(u \) were superharmonic we must have \(u(\mathbf{X}_0) > 0 \).

Lemma 2. Let \(Y_1, Y_2 \) be distinct points in \(\mathbb{R}^N \) such that \(||Y_1|| = ||Y_2|| \). Let \(r_1, r_2 \) denote the distances of a point from \(Y_1, Y_2 \), respectively, and define \(v \) in \(\mathbb{R}^N \) by \(v = r_1 \wedge r_2 \). Then there exists a positive number \(r_0 \) such that \(v(O) > M(v, O, r) \) for all \(r \) in \((0, r_0)\).

By using a magnification, we may suppose that \(||Y_1|| = ||Y_2|| = 1 \), and by rotating the axes, we may suppose further that \(Y_1 = (\cos \phi, \sin \phi, 0, \ldots, 0) \) and \(Y_2 = (-\cos \phi, \sin \phi, 0, \ldots, 0) \), where \(0 \leq \phi < \pi/2 \).

If \(\mathbf{X} = (x_1, \ldots, x_N) \in \mathbb{R}^N \) and \(r = ||\mathbf{X}|| \), then, writing

\[
/(\mathbf{X}) = r^2 - 2|x_1| \cos \phi - 2x_2 \sin \phi,
\]

we have

\[
v(\mathbf{X}) = (1 + f(\mathbf{X}))^{1/2} \leq 1 + \frac{1}{2}f(\mathbf{X}).
\]

Hence

\[
M(v, O, r) \leq 1 + \frac{1}{2}M(f, O, r) = 1 + \frac{1}{2}r^2 - (\cos \phi)M(|x_1|, O, r).
\]

Since \(M(|x_1|, O, r) \) is a positive multiple of \(r \) and \(\cos \phi > 0 \), we have \(M(v, O, r) < 1 = v(O) \) when \(r \) is small.

3. To prove the “only if” in Theorem 1, suppose that \(D \) is not convex. If \(\overline{D} \) is convex, then Lemma 1 implies that \(u \) is not superharmonic in \(\mathbb{R}^N \), since then \(\text{int}(\overline{D}) \) is convex \([2, \text{Theorem 1.11}]\) and so \(D \neq \text{int}(\overline{D}) \).

Now suppose that \(\overline{D} \) is nonconvex. A key result for this case is Motzkin’s theorem, which states that a proper closed subset \(F \) of \(\mathbb{R}^N \) is convex if and only if each point of \(\mathbb{R}^N \) has a unique nearest point of \(F \) (cf. \([2, \text{Theorem 7.8}]\)). Hence, taking \(F = \overline{D} \), we may assume that (by translating the origin, if necessary) \(O \in D' \) and that there exist distinct points \(Y_1, Y_2 \) of \(D \) such that \(d(O) = ||Y_1|| = ||Y_2|| > 0 \). Define \(v \) in \(\mathbb{R}^N \) by \(v(\mathbf{X}) = ||\mathbf{X} - Y_1|| \wedge ||\mathbf{X} - Y_2|| \). By Lemma 2, there exists \(r_0 > 0 \) such that \(v(O) > M(v, O, r) \) whenever \(0 < r < r_0 \). Also, \(B(O, r) \subset D' \) for one of these \(r \).

Since \(v(\mathbf{X}) \geq d(\mathbf{X}) \) for all \(\mathbf{X} \in D \) with equality when \(\mathbf{X} = O \), we obtain

\[
u(O) = -d(O) = -v(O) < -M(v, O, r) \leq -M(d, O, r) = M(u, O, r),
\]

so that \(u \) is not superharmonic in \(D' \).

The argument in the last paragraph (with \(\overline{D} \) replaced by \(F \)) proves the “only if” in Theorem 3. The proof of “if” in Theorem 3 is similar to the proof of “if” in Theorem 1 (§1).

4. To prove the plane case \((N = 2)\) of Theorem 2, we suppose that \(D \) is nonconvex in \(\mathbb{R}^2 \) and show that \(d \) is not superharmonic in \(D \). There exist a point \(Y_0 \) of \(\partial D \), a positive number \(\epsilon \) and a closed half-plane \(P \) with \(Y_0 \) on \(\partial P \) such that

\[
P \cap \left(B(Y_0, \epsilon) \setminus \{Y_0\} \right) \subset D;
\]
cf. [2, Theorem 4.8]. Without loss of generality, suppose that \(Y_0 = O \) and \(P = \{X: x_2 > 0\} \). Let \(X_0 = (0, \varepsilon/4) \) and \(B = B(X_0, \varepsilon/8) \). If \(X = (x_1, x_2) \in B \) and \(x_1 \neq 0 \), then \(d(X) > x_2 \). Hence, by the mean-value equality for the function \(x_2 \),

\[
\int_B d(X) \, dX > \int_B x_2 \, dX = \pi (\varepsilon/8)^2 (\varepsilon/4) = \pi (\varepsilon/8)^2 d(X_0),
\]

so that the mean-value inequality for the superharmonicity of \(d \) fails at \(X_0 \).

5. Here we show by an example that in higher dimensions (\(N \geq 3 \)) the superharmonicity of \(u \) in \(D \) does not necessarily imply the convexity of \(D \), nor even of \(\overline{D} \).

Let \(\Omega \) denote the torus in \(\mathbb{R}^3 \) obtained by rotating the disc \(\omega = \{(0, x_2, x_3): (x_2 - a)^2 + x_3^2 < 1 \} \), where \(a \geq 2 \), about the \(x_3 \)-axis. In the case \(N = 3 \) let \(D = \Omega \), and in the case \(N > 4 \) let \(D = \Omega \times \mathbb{R}^{N-3} \). Clearly \(D \) is not convex, and neither is \(\overline{D} \).

We shall show, however, that \(d \) is superharmonic in \(D \).

With a point \(X \) (in \(\mathbb{R}^N \)) we associate plane polar coordinates \((r, \theta)\) such that \(x_1 = r \cos \theta \) and \(x_2 = r \sin \theta \) and we put \(\rho = \rho(X) = (x_2^2 + (r - a)^2)^{1/2} \). Then \(D = \{ X: \rho < 1 \} \) and \(\partial D = \{ X: \rho = 1 \} \).

If \(X \in D \), then, in finding \(d(X) \), we may suppose that \((x_1, x_2, x_3) \in \omega \). Let \(X_0 = (0, a, 0, \ldots, 0) \). Then \(B(X, 1 - \|X - X_0\|) \subset B(X_0, 1) \subset D \) and so \(d(X) > 1 - \|X - X_0\| = 1 - \rho \). If \(X = X_0 \), then clearly \(d(X) = 1 \); if \(X \neq X_0 \), then the point \(Y_0 \) such that \(\|Y_0 - X_0\| = 1 \) and \(X_0, X, Y_0 \) are collinear (in that order) belongs to \(\partial D \), so that \(d(X) \leq \|X - Y_0\| = 1 - \rho \). Hence, in all cases, \(d(X) = 1 - \rho \).

Let \(G = \{ X: \rho = 0 \} \). We show first that \(d \) is superharmonic in \(D \setminus G \) by computing the Laplacian

\[
\Delta d(X) = -\Delta \rho = -\left(\frac{\partial^2 \rho}{\partial x_2^2} + r^{-1} \frac{\partial \rho}{\partial r} + \frac{\partial^2 \rho}{\partial r^2} \right) = \frac{a - 2r}{r \rho};
\]

as we have \(2r > 2(a - 1) \geq a \), we get \(\Delta d < 0 \). Hence \(d \) is superharmonic in \(D \setminus G \) and therefore satisfies the weak mean-value inequality in \(D \setminus G \) (that is, if \(S(X, r) \subset D \setminus G \), then \(d(X) \geq M(d, X, r) \)). Further, \(d \) takes its maximum value at each point of \(G \) and therefore the mean-value inequality holds on \(G \), too. As \(d \) is continuous, it follows that \(d \) is superharmonic in \(D \).

REFERENCES

DEPARTMENT OF PURE MATHEMATICS, THE QUEEN'S UNIVERSITY, BELFAST, NORTHERN IRELAND

DEPARTMENT OF PURE MATHEMATICS, THE UNIVERSITY, LIVERPOOL, ENGLAND