Criteria for a Blaschke quotient to be of uniformly bounded characteristic
HTML articles powered by AMS MathViewer
- by Shinji Yamashita
- Proc. Amer. Math. Soc. 93 (1985), 618-620
- DOI: https://doi.org/10.1090/S0002-9939-1985-0776190-X
- PDF | Request permission
Abstract:
Criteria for a quotient ${B_1}/{B_2}$ of Blaschke products ${B_1}$ and ${B_2}$ to be of uniformly bounded characteristic are proposed in terms of interpolating sequences.References
- Lennart Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math. 80 (1958), 921–930. MR 117349, DOI 10.2307/2372840
- Joseph A. Cima and Peter Colwell, Blaschke quotients and normality, Proc. Amer. Math. Soc. 19 (1968), 796–798. MR 227423, DOI 10.1090/S0002-9939-1968-0227423-X
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- Olli Lehto and K. I. Virtanen, Boundary behaviour and normal meromorphic functions, Acta Math. 97 (1957), 47–65. MR 87746, DOI 10.1007/BF02392392
- Shinji Yamashita, Functions of uniformly bounded characteristic, Ann. Acad. Sci. Fenn. Ser. A I Math. 7 (1982), no. 2, 349–367. MR 686650, DOI 10.5186/aasfm.1982.0733
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 93 (1985), 618-620
- MSC: Primary 30D50; Secondary 30D45
- DOI: https://doi.org/10.1090/S0002-9939-1985-0776190-X
- MathSciNet review: 776190