On the combinatorial properties of Blackwell spaces
HTML articles powered by AMS MathViewer
- by Jakub Jasiński
- Proc. Amer. Math. Soc. 93 (1985), 657-660
- DOI: https://doi.org/10.1090/S0002-9939-1985-0776198-4
- PDF | Request permission
Abstract:
Under ${\text {MA + }}\neg {\text {CH}}$ (Martin’s Axiom and negation of the Continuum Hypothesis) we prove that the intersection of a Blackwell space with the analytic set and the Cartesian product of a Blackwell space and a Borel set do not need to be Blackwell spaces.References
- K. P. S. Bhaskara Rao and B. V. Rao, Borel spaces, Dissertationes Math. (Rozprawy Mat.) 190 (1981), 63. MR 634451
- R. H. Bing, W. W. Bledsoe, and R. D. Mauldin, Sets generated by rectangles, Pacific J. Math. 51 (1974), 27–36. MR 357124, DOI 10.2140/pjm.1974.51.27 W. Bzyl, On the analytic dense sets, preprint, 1984.
- Włodzimierz Bzyl and Jakub Jasiński, A note on Blackwell spaces, Bull. Polish Acad. Sci. Math. 31 (1983), no. 5-8, 215–217 (1984) (English, with Russian summary). MR 750721 F. Hausdorff, Summen von ${\mathcal {J}_1}$ Mengen, Fund. Math. 26 (1936), 248.
- K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR 0217751 E. Marczewski, Characteristic function of the sequence of sets and some of its applications, Fund. Math. 31 (1938), 207-223.
- D. A. Martin and R. M. Solovay, Internal Cohen extensions, Ann. Math. Logic 2 (1970), no. 2, 143–178. MR 270904, DOI 10.1016/0003-4843(70)90009-4
- R. M. Shortt, Borel-dense Blackwell spaces are strongly Blackwell, Colloq. Math. 53 (1987), no. 1, 35–41. MR 890835, DOI 10.4064/cm-53-1-35-41
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 93 (1985), 657-660
- MSC: Primary 28A05; Secondary 03E50, 04A15
- DOI: https://doi.org/10.1090/S0002-9939-1985-0776198-4
- MathSciNet review: 776198