ON THE COMBINATORIAL PROPERTIES
OF BLACKWELL SPACES

JAKUB JASIŃSKI

Abstract. Under MA + ¬CH (Martin's Axiom and negation of the Continuum Hypothesis) we prove that the intersection of a Blackwell space with the analytic set and the Cartesian product of a Blackwell space and a Borel set do not need to be Blackwell spaces.

1. Introduction. In this paper we present a few examples illustrating the singular behaviour of Blackwell spaces. They shall provide (under MA + ¬CH) the negative answers to questions P4, P6, P7 and P8 raised by K. P. S. Bhaskara Rao and B. V. Rao in [1]. The first two were originally answered by W. Bzyl and J. Jasiński in [4]. Here we give a slight generalization of their result (Proposition 1).

On the other hand, W. Bzyl in [3], using the idea presented in [9], proved that questions P4, P6, P7 and a weaker version of P8 have positive answers when restricted to Blackwell spaces with totally imperfect complement in some analytic set.

Let us recall the main definitions. For a metric space X by $\mathcal{S}_a X$, we denote the additive Baire classes of Borel subsets of X, and by $\mathcal{B}(X)$ we denote a σ-algebra of all Borel subsets of X. A Borel measurable mapping $f: X \to Y$, where Y is a metric space, is called a class \mathcal{S}_a if, for all open subsets $U \subset Y$, $f^{-1}(U) \in \mathcal{S}_a(X)$.

A σ-algebra of subsets of X is called separable if it is countably generated (c.g.) and separates the points of X. Let X be a separable metric space. X is called a Blackwell space if $\mathcal{S}_a X$ does not contain a proper separable sub-σ-algebra. X is called a strongly Blackwell space if any two c.g. sub-σ-algebras of $\mathcal{B}(X)$ with the same atoms coincide. It is clear that a strongly Blackwell space is a Blackwell space. If A is an analytic subset of a Polish space, then A is strongly Blackwell. For this and for other results on Blackwell spaces see K. P. S. Bhaskara Rao and B. V. Rao [1].

2. Basic lemmas. We shall often refer to the well-known result of Silver:

Lemma 1. (MA) If Z is a separable metric space and $|Z| < 2^\omega$, then $\mathcal{B}(Z) = \mathcal{P}(Z)$.

For the proof see [8, pp. 162, 163]. As pointed out by K. P. S. Bhaskara Rao and B. V. Rao [1, p. 15], Lemma 1 implies the following

Lemma 2. (MA) If Z is a separable metric space with $|Z| < 2^\omega$, then Z is strongly Blackwell.
Lemma 3. If Y is a Blackwell space and B is a Borel subset of the Polish space, then $Y \cup B$ is a Blackwell space.

For the proof see [1, p. 28, 2°].

3. Main propositions. In this section, X will denote a Polish space.

Proposition 1. (MA) Let $B \in \mathcal{B}(X)$ be of cardinality 2^ω and let Z be an uncountable separable metric space of cardinality less than 2^ω. If $Z \cap B = \emptyset$, then $Z \cup B$ is a Blackwell space which is not strongly Blackwell.

Proof. By Lemma 2, Z is a Blackwell space, so, by Lemma 3, $B \cup Z$ is also a Blackwell space.

W. Bzyl and J. Jasiński in [4] proved that there exists a Borel set $B_1 \in \mathcal{B}(\mathbb{R}^2)$ and $Z, \subseteq \mathbb{R}$ with $|Z_1| = \omega_1$ such that $B_1 \cup Z$ is not a strongly Blackwell space. Let f: $B \to B_1$ be a Borel isomorphism (see [6, p. 450, Theorem 2]) and let

$$g: Z \to Z_1.$$

By Lemma 1 a mapping $h: B \cup Z \to B_1 \cup Z_1$, defined by

$$h(x) = \begin{cases}
 f(x) & \text{for } x \in B, \\
 g(x) & \text{for } x \in Z,
\end{cases}$$

is Borel measurable; hence, $B \cup Z$ is not strongly Blackwell.

A certain part of the next proposition does not require MA so we formulate it separately as

Lemma 4. Let $Y \subseteq X$ be a Blackwell (strongly Blackwell) space and let $Z \subseteq X \setminus Y$. If, for every Borel set $B \in \mathcal{B}(X)$, $B \cap Y = \emptyset$ implies $|B \cap Z| \leq \omega$, then $Y \cup Z$ is a Blackwell (strongly Blackwell) space.\(^1\)

Proof. We give a proof in case Y is a strongly Blackwell space. Let $\mathcal{C} \subseteq \mathcal{D} \subseteq \mathcal{B}(Y \cup Z)$ be c.g. σ-algebras with the same atoms and let $D \in \mathcal{D}$. By [1, p. 23, Proposition 8(5)] it suffices to show that $D \in \mathcal{C}$. Since Y is strongly Blackwell, $\mathcal{C} \uparrow_y = \mathcal{D} \uparrow_y$, so there is a set $C \in \mathcal{C}$ such that

(1) $C \cap Y = D \cap Y$.

Let $C', D' \in \mathcal{B}(X)$ be such that $C' \cap (Y \cup Z) = C$ and $D' \cap (Y \cup Z) = D$. By (1) the symmetric difference $D' \Delta C' \subseteq X \setminus Y$; hence, $(D' \Delta C') \cap Z \leq \omega$ and $|D \Delta C| \leq \omega$, so $D = C \Delta (C \Delta D) \in \mathcal{C}$.

Recall that whenever $A \subseteq X$ is an analytic non-Borel set, then there exist non-empty Borel sets $C_\alpha, \alpha < \omega_1$, such that each Borel set $B \in \mathcal{B}(X)$ disjoint with A is covered by countably many C_α’s. The sets C_α are called the constituents of a coanalytic set $X \setminus A$ (see [6, p. 499]).

Disjoint sets X_1, $X_2 \subseteq X$ are called Borel-separable if there is a Borel set $B \in \mathcal{B}(X)$ such that $X_1 \subseteq B$ and $X_2 \subseteq X \setminus B$.

\(^1\)This lemma has been obtained independently by R. M. Shorttnnn and K. P. S. Bhaskara Rao.
Proposition 2. (MA) Let \(A \subseteq X \) be an analytic non-Borel set and let \(\{ C_a \}_{a < \omega_1} \) be the constituents of \(X \setminus A \). Whenever \(Z \subseteq X \), \(\omega < |Z| < 2^\omega \) and \(A \cap Z = \emptyset \), then \(A \cup Z \) is not a Blackwell space iff there is an \(\alpha_0 < \omega_1 \) such that \(|C_{\alpha_0} \cap Z| > \omega \) and \(|\{ \alpha: C_\alpha \cap Z \neq \emptyset \}| = \omega_1 \).

Proof. “If” part. Let \(Z_1 \subseteq Z \cap C_{\alpha_0} \) be of cardinality \(\omega_1 \). Since
\[
|\{ \alpha < \omega_1: C_\alpha \cap Z \neq \emptyset \}| = \omega_1,
\]
there is a mapping \(g: Z_1 \to X \setminus (A \cup Z) \) such that \(g(Z_1) \) and \(A \) are disjoint non-Borel-separable.

Define \(f: A \cup Z \to X \),
\[
f(x) = \begin{cases}
 x & \text{for } x \in (A \cup Z) \setminus Z_1, \\
 g(x) & \text{for } x \in Z_1.
\end{cases}
\]
By Lemma 1, \(f \) is Borel measurable, but \(f(Z_1) = g(Z_1) \not\in \mathcal{B}(f(A \cup Z)) \), so \(A \cup Z \) is not a Blackwell space (see [1 p. 22, Proposition 7(2)]).

“Only if” part. Suppose \(|\{ \alpha: C_\alpha \cap Z \neq \emptyset \}| < \omega_1 \). In this case there is an \(\alpha < \omega_1 \) such that \(Z \cup A = Z \cup (\bigcup_{\beta > \alpha}C_\beta) \cup A \) is Borel, so, by Lemmas 2 and 3, \(A \cup Z \) is a Blackwell space.

In case, for every \(\alpha < \omega_1 \), \(|C_\alpha \cap Z| < \omega_1 \), then, for every Borel set \(B \in \mathcal{B}(X) \), \(B \cap A = \emptyset \) implies \(|B \cap Z| \leq \omega \), so, by Lemma 4, \(Z \cup A \) is a Blackwell space.

Corollary 1. (MA) Let \(A \) and \(Z \) be as in Proposition 2. If \(A \) and \(Z \) are Borel separable, then \(A \cup Z \) is not a Blackwell space.

Corollary 2. (MA + \(\neg \) CH) There exists a Blackwell space \(Y \) and an analytic set \(A \subseteq X \) such that \(Y \cap A \) is not a Blackwell space.

Proof. Let \(Y = B \cup Z \) where \(B \in \mathcal{B}(X) \), \(|B| = 2^\omega \), \(Z \subseteq X \), \(\omega < |Z| < 2^\omega \) and \(B \cap Z = \emptyset \). By Lemmas 2 and 3, \(Y \) is a Blackwell space. Let \(A_1 \subseteq B \) be an analytic non-Borel set and take \(A = A_1 \cup (X \setminus B) \). \(A \cap Y = A_1 \cup Z \) which is not Blackwell by Corollary 1.

Proposition 3. (MA) If \(Z \subseteq X \) and \(\omega < |Z| < 2^\omega \), then \(Z \times B \) is not a Blackwell space, where \(B \) is an uncountable Borel subset of some Polish space.

We shall precede the proof with two lemmas. The first one follows by Lemma 1 from [2, Theorem 3].

Lemma 5. (MA) Let \(\mathcal{N} \) be a set of irrational numbers. If \(Z \subseteq \mathcal{N} \) with \(|Z| < 2^\omega \), then \(B \in \mathcal{B}(Z \times \mathcal{N}) \) iff there is an \(\alpha < \omega_1 \) such that for every \(z \in Z \) the section \(B_z = \{ y: (z, y) \in B \} \in \Sigma_\alpha(\mathcal{N}) \).

Lemma 5 implies the following

Lemma 6. (MA) Let \(Z \) and \(B \) be as in Proposition 3. A mapping \(h: Z \times B \to Y \), where \(Y \) is a separable metric space, is Borel measurable iff there is an \(\alpha < \omega_1 \) such that for every \(z \in Z \) a restricted mapping \(h \upharpoonright \{ z \} \times B \) is of class \(\Sigma_\alpha \).
Proof. Apply the isomorphism theorem [6, p. 450, Corollary 1c].

Proof of Proposition 3. By the well-known theorem of Hausdorff [5], \(\mathcal{N} \) can be decomposed into \(\omega_1 \) disjoint uncountable sets of class \(\Sigma_1(\mathcal{N}) \), \(\mathcal{N} = \bigcup_{\alpha<\omega_1} E_\alpha \).

Let \(Z_1 \subseteq Z \) be of cardinality \(\omega_1 \). By Lemma 1, \(Z_1 \times B \in \mathcal{B}(Z \times B) \), so it suffices to prove that \(Z_1 \times B \) is not a Blackwell space (see [1, p. 28, 1°]). Let \(Z_1 = \{ z_\alpha : \alpha < \omega_1 \} \). There is a \(\gamma < \omega_1 \) such that for each \(\alpha < \omega_1 \) there is a Borel measurable function \(f_\alpha : B \to E_\alpha \) of class \(\Sigma_\gamma \) (see [6, p. 450, Theorem 2]). By Lemma 6, a mapping \(h: Z_1 \times \mathcal{N} \to \mathcal{N} \) defined by \(h(z_\alpha, x) = f_\alpha(x) \) is Borel measurable, but the inverse mapping is not, since \(Z_1 \times B \) is not Borel [6, p. 489, Theorem 1]. Hence, by [1, p. 22, Proposition 7 (2)], \(Z_1 \times B \) is not a Blackwell space.

References

5. F. Hausdorff, Summen von \(\mathcal{S} \) Menge, Fund. Math. 26 (1936), 248.
7. E. Marczewski, Characteristic function of the sequence of sets and some of its applications, Fund. Math. 31 (1938), 207–223.

Institute of Mathematics, University of Gdansk, ul. Wita Stwosza 57, 80–952 Gdansk, Poland