ON THE KERNEL OF A MARKOV PROJECTION ON \(C(X) \)

ROBERT E. ATALLA

ABSTRACT. Let \(X \) be a compact metric space and \(L \) a closed linear subspace of \(C(X) \), the real valued continuous functions on \(X \). We give necessary and sufficient conditions of an algebraic nature for \(L \) to be the kernel of a Markov projection \(P \) on \(C(X) \). We also characterize compact spaces for which our result holds as those for which the Borsuk-Dugundji simultaneous extension theorem holds.

1. Introduction. A projection \(P \) on \(C(X) \) is Markov if \(Pe = e \) (where \(e \) is the unit function) and \(P \geq 0 \), i.e., \(f \geq 0 \) implies \(Pf \geq 0 \). If \(P^* \) is the adjoint of \(P \) and \(\delta \), the Dirac measure at \(x \), let \(p_x = P^*\delta \), so that \(p_x \) is a probability measure, and for \(f \in C(X) \) we have \(Pf(x) = \int f \, dp_x \). Let \(P \) be the set of Borel probability measures on \(X \), a compact convex set in \(C(X)^* \), relative to the weak*-topology. Then \(P^*(P) \) is a compact convex set, and each extreme point \(m \) has the form \(p_x \) for some \(x \in X \)—just note that \(p_x^{-1}(m) \) is a convex compact subset of \(P \), and hence contains an extreme point, which is \(\delta_x \) for some \(x \in X \) [4, p. 34].

If \(m \) is a positive Borel measure, \(\text{supp} \, m \) denotes the closed support set of \(m \), and if \(m \) is any Borel measure, \(\text{supp} \, m \) is defined as \(\text{supp} \, |m| \). If \(P \) is a Markov projection, we define \(\text{supp} \, P = \text{closure} \cup \{ \text{supp} \, m : P^*m = m \} \). (Note that \(m \in \text{ran} \, P^* \) iff \(P^*m = m \).)

The structure of \(P \) is pretty well known. Birkhoff [1] and Kelley [3] characterized those \(P \) for which \(\text{ran} \, P \) is an algebra by the following properties: for each \(x \in X \), \(p_x \) is an extreme point of \(P^*(P) \), and for each \(f \in C(X) \), \(Pf \) is constant on \(\text{supp} \, p_x \). Moreover, \(P \) satisfies the averaging identity \(P(fPg) = PfPg \). Lloyd [5] showed that if \(P \) is an arbitrary Markov projection, then \(Pf \) is constant on \(\text{supp} \, p_x \), whenever \(p_x \) is an extreme point of \(P^*(P) \). It follows easily that the natural restriction of \(P \) to a projection on \(C(\text{supp} \, P) \) satisfies the Birkhoff-Kelley conditions. Later Lloyd and Seever found the following identity for all Markov projection: \(P(fPg) = P(PfPg) \) ([6 and 7], see also [9]).

This formula may be rewritten as \(0 = P((f - Pf)Pg) \), i.e., \(f_0 \in \ker \, P \) and \(g_0 \in \text{ran} \, P \), then \(f_0g_0 \in \ker \, P \). This condition is not quite strong enough to characterize the kernel of a Markov projection, so we note a natural property of such projections, namely if \(f \geq 0 \), then \(Pf = 0 \) iff \(f \) vanishes on \(\text{supp} \, P \). This is an obvious consequence of the fact that for \(x \in X \), \(p_x \) is a probability measure. Thus, if \(P \) is a
Markov projection we have

(1) \(\text{ker} \, P + \text{ran} \, P = C(X) \),
(2) \((\text{ran} \, P)(\text{ker} \, P) \subset \text{ker} \, P \),
(3) \(I = \{ f : P^2 f = 0 \} \) is an ideal in \(C(X) \).

(Note that if \(m \) is a nonpositive Borel measure with \(m(e) = 1 \), and we define \(P \) by
\(Pf(x) = m(f) \) for all \(f \in C(X) \), then (1) and (2) hold, but not (3).)

Our main result is

Theorem. Let \(X \) be compact metric, \(L \) a proper closed linear subspace of \(C(X) \), and \(M = \{ f : fL \subset L \} \). If

(a) \(L + M = C(X) \), and
(b) \(I = \{ f : f^2 \in L \} \) is an ideal,

then there exists a Markov projection \(P \) on \(C(X) \) such that \(L = \text{ker} \, P \) and \(\text{ran} \, P \subset M \).

2. Preliminaries. Throughout, \(L \) will be a closed subspace of \(C(X) \), the real valued continuous functions on \(X \), and \(M \) and \(I \) are as defined in the Theorem. In this section we study the structure of \(I \) after we give some definitions.

Let \(L^+ = \{ m \in C(X)^* : m(f) = 0 \text{ for all } f \in L \} \), and let \((L^+)_1 \) be the closed unit ball in \(L^+ \), a compact convex set in the weak*-topology. Note that \(f \in L \) iff \(m(f) = 0 \) for all \(m \in L^+ \) (by Hahn-Banach). Obviously, \(f \in M \) iff \(f \, dm \in L^1 \) for all \(m \in L^+ \), so \(M = \{ f \in C(X) : fL^+ \subset L^+ \} \). Further, \(f \in M \) iff \(f \) is constant on \(\text{supp} \, m \) for each extreme point \(m \in (L^+)_1 \) [4, pp. 35-36]. We also define \(Z(I) = \{ f^{-1}(0) : f \in I \} \) and \(supp \, L^+ = \text{closure} \bigcup \{ \text{supp} \, m : m \in L^1 \} \). If \(f \in C(X) \) and \(A \subset X \), then \(f_A \) is the restriction of \(f \) to \(A \), and \(L_A = \{ f_A : f \in L \} \).

2.1 Remark. \(Z(I) \subset \text{supp} \, L^+ \).

Proof. If \(x \notin \text{supp} \, L^+ \), then by complete regularity there exists \(f \in C(X) \) which vanishes on \(\text{supp} \, L^+ \), but \(f(x) \neq 0 \). Then \(f^2 \in L \), so \(f \in I \) and \(x \notin Z(I) \).

2.2 Proposition. The following are equivalent:

(a) \(I \) is an ideal,
(b) \(Z(I) = \text{supp} \, L^+ \).

Proof. (b) implies (a). We show \(f \in I \) iff \(\text{supp} \, L^+ \subset f^{-1}(0) \), so that \(I \) is the ideal \(\{ g : \text{supp} \, L^+ \subset g^{-1}(0) \} \). If \(f \in I \), then (b) implies \(\text{supp} \, L^+ \subset f^{-1}(0) \). If \(\text{supp} \, L^+ \subset f^{-1}(0) \), then for all \(m \in L^+ \), \(0 = m(f^2) \), so \(f^2 \in L \) and \(f \in I \).

(a) implies (b). To show \(\text{supp} \, L^+ \subset Z(I) \), let \(f \in I \) and \(m \in L^+ \). Let \(m = m^+ - m^- \) be the Lebesgue decomposition with \(m^+ \) supported by the Baire set \(A \) and \(m^- \) supported by \(X \setminus A \). Let \(g_n \in C(X) \) with \(1 \geq g_n \geq 0 \) and \(g_n \to 1_A \) \(|m|\)-a.e. Now \(f g_n \in I \) so \(f^2 g_n^2 \in L \), and

\[
\int f^2 \, dm^+ = \int f^2 1_A \, dm = \lim \int f^2 g_n^2 \, dm = 0
\]

since \(m \in L^+ \). Likewise \(\int f^2 \, dm^- = 0 \), so \(f^2 = 0 \) \(|m|\)-a.e. By continuity, \(\text{supp} \, m \subset f^{-1}(0) \), and since \(m \) is arbitrary, \(\text{supp} \, L^+ \subset f^{-1}(0) \).

2.3 Proposition. If \(M + L = C(X) \) and \(m \) is an extreme point of \((L^+)_1 \), then \(m(e) \neq 0 \).
Proof. Let $S = \text{supp } m$. (Since L is proper, $m \neq 0$.) If $f \in M$ then f is constant on S. By hypothesis $C(S) = L_S + M_S$. But then $C(S) = L_S + \text{constants}$, so if $g \in C(S)$ we have $g = h + ce$ with $h \in L_S$ and c constant, whence $m(g) = m(h) + cm(e) = 0 + cm(e)$. If $m(e) = 0$, then $m = 0$, which is impossible.

2.4 Proposition. If $L + M = C(X)$, then (a) and (b) in 2.2 are equivalent to
(c) $I \subset M$.

Proof. (b) implies (c). If $f \in I$, then f is constant (in fact, 0) on $\text{supp } m$ whenever $m \in L^\perp$. Hence, $f \in M$ [4, pp. 35–36].

(c) implies (b). By 2.1 we always have $Z(I) \subset \text{supp } L^\perp$. Conversely, if $f \in I$, then (c) implies f is constant on $\text{supp } m$ whenever m is extreme in $(L^\perp)_1$. But since $f^2 \in L$ as well, $m(f^2) = 0$. Since $m(e) \neq 0$, f^2 must be 0 on $\text{supp } m$. It is an easy consequence of Krein-Milman that sets of the form $\text{supp } m$, with m extreme in $(L^\perp)_1$, are dense in $\text{supp } L^{-1}$, so $\text{supp } L^{-1} \subset f^{-1}(0)$.

2.5 Proposition. Let $I_0 = \{ f \in C(X) : f \in L \text{ and } f^2 \in L \}$. If I is an ideal, then $I = I_0$, and hence $I \subset L \cap M$, provided $L + M = C(X)$.

Proof. Clearly, $I_0 \subset I$. If I is an ideal, then $Z(I) = \text{supp } L^\perp$, by 2.2, so if $f \in I$, then $0 = m(f) = m(f^2)$ for all $m \in L^\perp$, whence $f \in L$ as well as $f^2 \in L$. Thus $f \in I_0$.

2.6 Remark. Propositions 2.2 and 2.4 remain true if I is replaced by I_0. This fact is not needed below, and we omit the easy proof. In §4 we give some examples on the relation between I and I_0.

3. Proof of Theorem. (i) Let $Z = Z(I)$. By 2.4, hypotheses (a) and (b) of the Theorem imply $Z = \text{supp } L^\perp$. We now prove $I = L \cap M$. By 2.5 we already have $I \subset L \cap M$. Conversely, if $f \in L \cap M$, then f is constant on $\text{supp } m$ for m extreme in $(L^\perp)_1$, while $m(f) = 0$ because $f \in L$. Since by 2.3 $m(e) \neq 0$, we have $f = 0$ on $\text{supp } m$. It follows that $L^\perp \subset f^{-1}(0)$, so $f \in I$.

(ii) Since $C(X) = L + M, I = L \cap M$, and $Z = Z(I)$, we have $C(Z) = L_Z \oplus M_Z$. Thus, there exists a projection Q on $C(Z)$ whose kernel is L_Z and whose range is M_Z. If e_z is the restriction of e to Z, then clearly $Qe_z = e_z$, and it remains to show that $Q \geq 0$ (and then that Q extends to a Markov projection P on $C(X)$).

(iii) First we show that because (1) $\text{ran}(Q) \text{ker}(Q) \subset \text{ker}(Q)$ and (2) $\text{ran}(Q)$ is an algebra, we have $Q(fg) = QfQg$ for all f and g in $C(Z)$.

$$Q(fg) = Q((f - Qf + Qf)Qg) = Q((f - Qf)Qg + Q(QfQg))$$

$$= 0 + QfQg.$$

(iv) Secondly, if $f \geq 0$ and $Qf = 0$, then $f = 0$ on Z. Let $F \in C(X)$ satisfy $F \geq 0$ and $F_Z = f$. Since $f \in L_Z$, there exists $G \in L$ with $G_Z = f$, i.e., $G_Z = F_Z$. If $m \in L^\perp$, then $\text{supp } m \in Z$, so $m(F) = m(G) = 0$, so $F \in L$. Since $F \geq 0$, we have $F^{1/2} \in I \subset M$. Since M is an algebra, $F \in M$, i.e., $F \in L \cap M = I$, so $f = F_Z = 0$.

(v) Finally, suppose there exists $f \in C(Z)$ with $f \geq 0$, but $Qf(x) < 0$ for some x. The set $V = \{ y : Qf(y) < 0 \}$ is open in Z relative to the topology generated by the
subalgebra \(M_z = Q(C(Z)) \), which is completely regular, but not Hausdorff. Hence, there exists \(g \in M_z \) such that \(g(x) = 1 \), \(g = 0 \) off \(V \), and \(0 \leq g \leq 1 \). Let \(h = gf \). Then \(h \geq 0 \), and, by (iii), \(Qh = Q(gf) = Q((Qg)f) = QgQf = gQf \). So \(Qh(x) = Qf(x) < 0 \), \(Qh \leq 0 \) on \(V \), and \(Qh = 0 \) off \(V \). Let \(k = h - Qh \geq 0 \). Then \(Qk = 0 \), so, by (iv), \(k = 0 \) on \(Z \), i.e., \(h = Qh \). But this is impossible since \(h(x) \geq 0 \) and \(Qh(x) < 0 \). (The last three lines were inspired by a homework paper of graduate student Pengyuan Chen.)

(vi) We now show that \(Q \) extends to a Markov projection on \(C(X) \). Since \(X \) is compact metric (and this is the only time metrizability is used) there exists a simultaneous extender, i.e., a positive linear map \(E: C(Z) \rightarrow C(X) \) such that, for \(x \in Z \), \(f(x) = Ef(x) \), and also \(Ee_Z = e_X = e \). (See the Borsuk-Dugundji theorem in [8, p. 365].) We define \(P \) by \(Pf(x) = E(Q(fz))(x) \). It is easy to check that \(P \) is a Markov projection, and we must show that \(L = \ker P \) and \(\text{ran } P \subseteq M \).

(vii) To show \(L \subseteq \ker P \), if \(f \in L \), then \(fz \in L_Z \), so \(Pf = E(Q(fz)) = E(0) = 0 \). To show \(\ker P \subseteq L \), suppose \(0 = Pf = E(Q(fz)) \). If \(m \in C(X)^* \) and \(\text{supp } m \subseteq Z \), let \(m_Z \) be \(m \) considered as an element of \(C(Z)^* \), so for \(g \in C(Z) \), \(m(g) = m_Z(g_Z) \), and for \(g \in C(Z) \), \(m_Z(g) = m(Eg) \). Then \(m \in L^\perp \) iff \(m_Z \in (L_Z)^\perp \). Since \(L_Z = \ker Q \) and \(Q \) is a projection, \((L_Z)^\perp = \text{ran } (Q^*) \), so \(m \in L^\perp \) iff \(Q^*m_Z = m_Z \). Hence, for all \(m \in L^\perp \),

\[
\begin{align*}
m(f) &= m_Z(fz) = Q^*m_Z(fz) = Q_Z(Q(fz)) = m(E(Qfz)) \\
&= m(Pf) = m(0) = 0.
\end{align*}
\]

It follows that \(f \in L \).

(viii) To show \(\text{ran } P \subseteq M \), since \(L = \ker P \) and \(P \) is a Markov operator, property (2) of the introduction says \((\text{ran } P)L \subseteq L \).

4. Examples. We assumed metrizability of \(X \) only in order to invoke the Borsuk-Dugundji extension theorem. The following rather surprising result shows that the extension theorem is necessary as well as sufficient.

4.1 Proposition. If \(X \) is a compact Hausdorff space, the following are equivalent:

(a) If \(Z \) is a closed subset, there exists a Markov extension operator \(E: C(Z) \rightarrow C(X) \).

(b) The result of our main theorem holds for \(C(X) \).

Proof. We already know that (a) implies (b). Conversely, suppose (b) holds. If \(Z \) is closed in \(X \), let \(L = \{ f : f_z = 0 \} \) be an ideal. Then \(L = L \), so \(L \) is an ideal, and \(M = C(X) \), so \(M + L = C(X) \). By (b) there exists a Markov projection \(P \) with \(\ker P = L \). Now \(\text{ran } P^* = L^\perp = C(Z)^* \), the space of regular Borel measures on \(Z \). That is, if \(m \in C(X)^* \) and \(\text{supp } m \subseteq Z \), then \(P^*m = m \). We define the extension operator \(E \) as follows: if \(f \in C(Z) \), let \(f_1 \) be any norm-preserving extension of \(f \) to an element of \(C(X) \), and let \(Ef = Pf_1 \). To show \(E \) is well defined, suppose \(f_2 \) is any other extension of \(f \) to an element of \(C(X) \). If \(x \in X \), then \(\text{supp } p_x \subseteq Z \), so \(Pf_1(x) = Pf_2(x) = \int f \, dp_x \). To show \(E \) is an extension operator, i.e., \((Ef)_Z = f \), let \(x \in Z \). Then \(P^*\delta_x = \delta_x \), so \(Ef(x) = Pf_1(x) = P^*\delta_x(f_1) = f_1(x) = f(x) \). This completes the proof.

Remark. The extension property fails for \(X = \beta N \) and \(Z = \beta N \setminus N \) [8, p. 375].
4.2 Example. We give an example to show that the hypothesis $L + M = C(X)$ is really needed for Propositions 2.3 and 2.4. Let $X = \{1, 2, 3, 4\}$ with the discrete topology, so that $C(X)$ is essentially R^4. For simplicity we identify $f \in C(X)$ with its values (a, b, c, d). Let

$$L = \{(a, -a, b, b) : a, b \in R\},$$

so L^\perp is the span of the measures whose values at points are $(1, 1, 0, 0)$ and $(0, 0, 1, -1)$. Now $M = \{(a, a, b, b) : a, b \in R\}$ so $M + L \neq C(X)$. $I = I_0 = \{(0, 0, a, a) : a \in R\}$, which is not an ideal. However, $I \subset M$, so 2.4 fails. Further, $m = (0, 0, \frac{1}{2}, -\frac{1}{2})$ is an extreme measure in $(L^\perp)_1$, but $m(e) = 0$, so 2.3 fails.

We now mention without details some other simple examples we have. (i) $L + M = C(X)$, I_0 is not an ideal, $I \neq I_0$, $I \not\subset M$; (ii) $L + M = C(X)$, I_0 is an ideal, I is not; (iii) $L + M \neq C(X)$, I_0 is an ideal, I is not, and $I \not\subset M$.

5. Remarks. I do not know whether our result is valid in noncommutative C^*-algebras. It is known that for unital C_0-algebras, the identity $P(PaPb) = P(aPb)$ holds, where multiplication is the Jordan product [10, Lemma 1.1].

From [2] it is clear that contractive projections are more complicated than Markov projections, and it is not generally true that $(\text{ran } P)(\text{ker } P) \subset \text{ker } P$. In fact, if $f \in C_c(X)$ (the complex continuous functions) and m is extreme in $(L^\perp)_1$, where $L = \text{ker } P$, then on $\text{supp } m$, Pf is a constant times the Radon-Nikodym derivative $d|m|/dm$. (If P is Markov, then $|m| = \pm m$, so Pf is constant on $\text{supp } m$.) It is an easy consequence of this that $(\text{ran } P)(\text{ran } P)^* \subset \text{mult } P$, or, equivalently, the identity $P(Pf(Pg)^*Ph) = P(f(Pg)^*Ph)$—the bar stands for complex conjugation. In fact, this is proved for general C^*-algebras in [11, Corollary 3].

Finally, in view of Proposition 4.1, it would be interesting to find characterizations—topological or analytic—of compact spaces for which the extension theorem holds. See [8] for references.

I am grateful to A. Iwanik for pointing out that our result fails if L is not a proper subspace of $C(X)$.

REFERENCES

7. G. Seever, Nonnegative projections on $C_0(X)$, Pacific J. Math. 17 (1966), 159–166.

DEPARTMENT OF MATHEMATICS, OHIO UNIVERSITY, ATHENS, OHIO 45701