A Diophantine problem for Laurent polynomial rings
HTML articles powered by AMS MathViewer
- by Peter Pappas
- Proc. Amer. Math. Soc. 93 (1985), 713-718
- DOI: https://doi.org/10.1090/S0002-9939-1985-0776209-6
- PDF | Request permission
Abstract:
Let $R$ be an integral domain of characteristic zero. We prove that the diophantine problem for the Laurent polynomial ring $R[T,{T^{ - 1}}]$ with coefficients in ${\mathbf {Z}}[T]$ is unsolvable. Under suitable conditions on $R$ we then show that either ${\mathbf {Z}}$ or ${\mathbf {Z}}[i]$ is diophantine over $R[T,{T^{ - 1}}]$.References
- Martin Davis, Hilbert’s tenth problem is unsolvable, Amer. Math. Monthly 80 (1973), 233–269. MR 317916, DOI 10.2307/2318447
- J. Denef, Hilbert’s tenth problem for quadratic rings, Proc. Amer. Math. Soc. 48 (1975), 214–220. MR 360513, DOI 10.1090/S0002-9939-1975-0360513-3
- J. Denef, The Diophantine problem for polynomial rings and fields of rational functions, Trans. Amer. Math. Soc. 242 (1978), 391–399. MR 0491583, DOI 10.1090/S0002-9947-1978-0491583-7
- J. Denef, Diophantine sets over algebraic integer rings. II, Trans. Amer. Math. Soc. 257 (1980), no. 1, 227–236. MR 549163, DOI 10.1090/S0002-9947-1980-0549163-X
- Michael O. Rabin, Computable algebra, general theory and theory of computable fields, Trans. Amer. Math. Soc. 95 (1960), 341–360. MR 113807, DOI 10.1090/S0002-9947-1960-0113807-4
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 93 (1985), 713-718
- MSC: Primary 03D35; Secondary 11U05
- DOI: https://doi.org/10.1090/S0002-9939-1985-0776209-6
- MathSciNet review: 776209