Height and width of superatomic Boolean algebras
HTML articles powered by AMS MathViewer
- by Judy Roitman
- Proc. Amer. Math. Soc. 94 (1985), 9-14
- DOI: https://doi.org/10.1090/S0002-9939-1985-0781045-0
- PDF | Request permission
Abstract:
Cantor-Bendixson height and width of superatomic Boolean algebras is investigated and it is shown that (1) you don’t need a Canadian tree to construct an ${\omega _1}$-thin-thick superatomic Boolean algebra; (2) ${\mathbf {c}}$ can be very large and for all $\kappa < {\mathbf {c}}$ and all uncountable $\lambda ,\kappa < {\mathbf {c}}$, there are no $\kappa$-thin-very tall, $\lambda$-thin-tall, $\kappa$-very thin-thick, or $\lambda$-thin-thick superatomic Boolean algebras on $\kappa$.References
- James E. Baumgartner, Almost-disjoint sets, the dense set problem and the partition calculus, Ann. Math. Logic 9 (1976), no. 4, 401–439. MR 401472, DOI 10.1016/0003-4843(76)90018-8
- A. R. D. Mathias (ed.), Surveys in set theory, London Mathematical Society Lecture Note Series, vol. 87, Cambridge University Press, Cambridge, 1983. MR 823774, DOI 10.1017/CBO9780511758867
- George W. Day, Superatomic Boolean algebras, Pacific J. Math. 23 (1967), 479–489. MR 221993
- Keith J. Devlin, Kurepa’s hypothesis and the continuum, Fund. Math. 89 (1975), no. 1, 23–31. MR 398826, DOI 10.4064/fm-89-1-23-31
- Keith J. Devlin, $\aleph _{1}$-trees, Ann. Math. Logic 13 (1978), no. 3, 267–330. MR 491861, DOI 10.1016/S0003-4843(78)80002-3
- I. Juhász and W. Weiss, On thin-tall scattered spaces, Colloq. Math. 40 (1978/79), no. 1, 63–68. MR 529798, DOI 10.4064/cm-40-1-63-68
- Winfried Just, Two consistency results concerning thin-tall Boolean algebras, Algebra Universalis 20 (1985), no. 2, 135–142. MR 806609, DOI 10.1007/BF01278592
- Robert LaGrange, Concerning the cardinal sequence of a Boolean algebra, Algebra Universalis 7 (1977), no. 3, 307–312. MR 441811, DOI 10.1007/BF02485440
- William Mitchell, Aronszajn trees and the independence of the transfer property, Ann. Math. Logic 5 (1972/73), 21–46. MR 313057, DOI 10.1016/0003-4843(72)90017-4
- M. Rajagopalan, A chain compact space which is not strongly scattered, Israel J. Math. 23 (1976), no. 2, 117–125. MR 402701, DOI 10.1007/BF02756790
- Stevo B. Todorčević, Some consequences of $\textrm {MA}+\neg \textrm {wKH}$, Topology Appl. 12 (1981), no. 2, 187–202. MR 612015, DOI 10.1016/0166-8641(81)90020-1
- Michael L. Wage, Almost disjoint sets and Martin’s axiom, J. Symbolic Logic 44 (1979), no. 3, 313–318. MR 540662, DOI 10.2307/2273124 M. Weese, On the classification of compact scattered spaces (Proc. Conf. on Topology and Measure. III), Part 2, Greifswald, 1982, pp. 347-356. —, On cardinal sequences of Boolean algebras (to appear).
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 94 (1985), 9-14
- MSC: Primary 06E99; Secondary 03E35
- DOI: https://doi.org/10.1090/S0002-9939-1985-0781045-0
- MathSciNet review: 781045