Asymptotic behavior of solutions of Volterra integro-differential equations
HTML articles powered by AMS MathViewer
- by M. Rama Mohana Rao and P. Srinivas
- Proc. Amer. Math. Soc. 94 (1985), 55-60
- DOI: https://doi.org/10.1090/S0002-9939-1985-0781056-5
- PDF | Request permission
Abstract:
The asymptotic behavior of solutions of Volterra integrodifferential equations of the form \[ x’(t) = A(t)x(t) + \int _0^t {K(t,s)} x(s)ds + F(t)\] is discussed in which $A$ is not necessarily a stable matrix. An equivalent equation which involves an arbitrary function is derived and a proper choice of this function would pave a way for the new coefficient matrix $B$ (corresponding $A$) to be stable.References
- T. A. Burton, Stability theory for Volterra equations, J. Differential Equations 32 (1979), no. 1, 101–118. MR 532766, DOI 10.1016/0022-0396(79)90054-8
- T. A. Burton, Uniform stabilities for Volterra equations, J. Differential Equations 36 (1980), no. 1, 40–53. MR 571126, DOI 10.1016/0022-0396(80)90074-1
- T. A. Burton, An integro-differential equation, Proc. Amer. Math. Soc. 79 (1980), no. 3, 393–399. MR 567979, DOI 10.1090/S0002-9939-1980-0567979-6
- W. A. Coppel, Stability and asymptotic behavior of differential equations, D. C. Heath and Company, Boston, Mass., 1965. MR 0190463
- W. A. Coppel, Dichotomies in stability theory, Lecture Notes in Mathematics, Vol. 629, Springer-Verlag, Berlin-New York, 1978. MR 0481196
- Ronald Grimmer and George Seifert, Stability properties of Volterra integrodifferential equations, J. Differential Equations 19 (1975), no. 1, 142–166. MR 388002, DOI 10.1016/0022-0396(75)90025-X
- S. I. Grossman and R. K. Miller, Nonlinear Volterra integrodifferential systems with $L^{1}$-kernels, J. Differential Equations 13 (1973), 551–566. MR 348417, DOI 10.1016/0022-0396(73)90011-9 —, Perturbation theory for Volterra integro-differential systems, J. Differential Equations 8 (1970), 451-474.
- J. J. Levin, The asymptotic behavior of the solution of a Volterra equation, Proc. Amer. Math. Soc. 14 (1963), 534–541. MR 152852, DOI 10.1090/S0002-9939-1963-0152852-8
- V. Lakshmikantham and M. Rama Mohana Rao, Integro-differential equations and extension of Lyapunov’s method, J. Math. Anal. Appl. 30 (1970), 435–447. MR 254549, DOI 10.1016/0022-247X(70)90175-7
- Raymond E. A. C. Paley and Norbert Wiener, Fourier transforms in the complex domain, American Mathematical Society Colloquium Publications, vol. 19, American Mathematical Society, Providence, RI, 1987. Reprint of the 1934 original. MR 1451142, DOI 10.1090/coll/019
- M. Rama Mohana Rao, Ordinary differential equations, Affiliated East-West Press Pvt. Ltd., New Delhi, 1980. Theory and applications; With a foreword by V. Lakshmikantham. MR 587850
- M. Rama Mohana Rao and Chris P. Tsokos, Integro-differential equations of Volterra type, Bull. Austral. Math. Soc. 3 (1970), 9–22. MR 278027, DOI 10.1017/S0004972700045603
- George Seifert, Liapunov-Razumikhin conditions for stability and boundedness of functional differential equations of Volterra type, J. Differential Equations 14 (1973), 424–430. MR 492745, DOI 10.1016/0022-0396(73)90058-2
- George Seifert, Liapunov-Razumikhin conditions for asymptotic stability in functional differential equations of Volterra type, J. Differential Equations 16 (1974), 289–297. MR 460837, DOI 10.1016/0022-0396(74)90016-3
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 94 (1985), 55-60
- MSC: Primary 45J05
- DOI: https://doi.org/10.1090/S0002-9939-1985-0781056-5
- MathSciNet review: 781056