## Isometries in semisimple, commutative Banach algebras

HTML articles powered by AMS MathViewer

- by Krzysztof Jarosz PDF
- Proc. Amer. Math. Soc.
**94**(1985), 65-71 Request permission

## Abstract:

We show that for any semisimple, commutative, complex Banach algebra $A$ with unit there are norms on $A$, which we call natural norms, equivalent to the original norm on $A$ with the following property: Let $(A,|| \cdot |{|_A},{e_A})$ and $(B,|| \cdot |{|_B},{e_B})$ are commutative, semisimple Banach algebras with units and natural norms. Assume $T$ is a linear isometry from $(A,|| \cdot |{|_A})$ onto $(B,|| \cdot |{|_B})$ with $T{e_A} = {e_B}$. Then $T$ is an isomorphism in the category of Banach algebras. For a fairly large class of algebras, for example, for uniform algebras, for algebras of the form ${C^k}(X),{\text { Lip}}(X),{\text { AC}}(X)$, the natural norm we have defined coincides with a usual norm.## References

- M. Cambern,
*Isometries of certain Banach algebras*, Studia Math.**25**(1964/65), 217β225. MR**172129**, DOI 10.4064/sm-25-2-217-225 - Michael Cambern and Vijay D. Pathak,
*Isometries of spaces of differentiable functions*, Math. Japon.**26**(1981), no.Β 3, 253β260. MR**624212** - Theodore W. Gamelin,
*Uniform algebras*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1969. MR**0410387** - Masao Nagasawa,
*Isomorphisms between commutative Banach algebras with an application to rings of analytic functions*, K\B{o}dai Math. Sem. Rep.**11**(1959), 182β188. MR**121645** - V. D. Pathak,
*Isometries of $C^{(n)}[0,\,1]$*, Pacific J. Math.**94**(1981), no.Β 1, 211β222. MR**625820** - V. D. Pathak,
*Linear isometries of spaces of absolutely continuous functions*, Canadian J. Math.**34**(1982), no.Β 2, 298β306. MR**658967**, DOI 10.4153/CJM-1982-019-7 - N. V. Rao and A. K. Roy,
*Linear isometries of some function spaces*, Pacific J. Math.**38**(1971), 177β192. MR**308763**

## Additional Information

- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**94**(1985), 65-71 - MSC: Primary 46J05
- DOI: https://doi.org/10.1090/S0002-9939-1985-0781058-9
- MathSciNet review: 781058