Isometries in semisimple, commutative Banach algebras
HTML articles powered by AMS MathViewer
- by Krzysztof Jarosz
- Proc. Amer. Math. Soc. 94 (1985), 65-71
- DOI: https://doi.org/10.1090/S0002-9939-1985-0781058-9
- PDF | Request permission
Abstract:
We show that for any semisimple, commutative, complex Banach algebra $A$ with unit there are norms on $A$, which we call natural norms, equivalent to the original norm on $A$ with the following property: Let $(A,|| \cdot |{|_A},{e_A})$ and $(B,|| \cdot |{|_B},{e_B})$ are commutative, semisimple Banach algebras with units and natural norms. Assume $T$ is a linear isometry from $(A,|| \cdot |{|_A})$ onto $(B,|| \cdot |{|_B})$ with $T{e_A} = {e_B}$. Then $T$ is an isomorphism in the category of Banach algebras. For a fairly large class of algebras, for example, for uniform algebras, for algebras of the form ${C^k}(X),{\text { Lip}}(X),{\text { AC}}(X)$, the natural norm we have defined coincides with a usual norm.References
- M. Cambern, Isometries of certain Banach algebras, Studia Math. 25 (1964/65), 217β225. MR 172129, DOI 10.4064/sm-25-2-217-225
- Michael Cambern and Vijay D. Pathak, Isometries of spaces of differentiable functions, Math. Japon. 26 (1981), no.Β 3, 253β260. MR 624212
- Theodore W. Gamelin, Uniform algebras, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1969. MR 0410387
- Masao Nagasawa, Isomorphisms between commutative Banach algebras with an application to rings of analytic functions, K\B{o}dai Math. Sem. Rep. 11 (1959), 182β188. MR 121645
- V. D. Pathak, Isometries of $C^{(n)}[0,\,1]$, Pacific J. Math. 94 (1981), no.Β 1, 211β222. MR 625820
- V. D. Pathak, Linear isometries of spaces of absolutely continuous functions, Canadian J. Math. 34 (1982), no.Β 2, 298β306. MR 658967, DOI 10.4153/CJM-1982-019-7
- N. V. Rao and A. K. Roy, Linear isometries of some function spaces, Pacific J. Math. 38 (1971), 177β192. MR 308763
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 94 (1985), 65-71
- MSC: Primary 46J05
- DOI: https://doi.org/10.1090/S0002-9939-1985-0781058-9
- MathSciNet review: 781058