Odd starlike functions
HTML articles powered by AMS MathViewer
- by Ram Singh and Sangita Puri
- Proc. Amer. Math. Soc. 94 (1985), 77-80
- DOI: https://doi.org/10.1090/S0002-9939-1985-0781060-7
- PDF | Request permission
Abstract:
In the present paper, among other things, we prove that if $f(f(0) = 0,f’(0) = 1)$ is regular and odd starlike in $\left | z \right | < 1$, then ${\text {Re }}f(z)/{s_n}(z,f) > 1/2,\;\left | z \right | < 1$, where ${s_n}(z,f)$ denotes the $n$th partial sum of $f,\;n = 1,2,3, \ldots ,$, thus generalising the known result: $\operatorname {Re} {\text { }}f(z)/z > 1/2,\;\left | z \right | < 1$. As an application, we show that each partial sum of an odd convex function is close-to-convex in $\left | z \right | < 1$.References
- Peter L. Duren, Univalent functions, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 259, Springer-Verlag, New York, 1983. MR 708494 A. Marx, Untersuchungen über schlichte Abbildungen, Math. Ann. 107 (1932-33), 40-67.
- M. S. Robertson, Univalent functions starlike with respect to a boundary point, J. Math. Anal. Appl. 81 (1981), no. 2, 327–345. MR 622822, DOI 10.1016/0022-247X(81)90067-6
- Stephan Ruscheweyh, On the radius of univalence of the partial sums of convex functions, Bull. London Math. Soc. 4 (1972), 367–369. MR 316697, DOI 10.1112/blms/4.3.367
- St. Ruscheweyh and T. Sheil-Small, Hadamard products of Schlicht functions and the Pólya-Schoenberg conjecture, Comment. Math. Helv. 48 (1973), 119–135. MR 328051, DOI 10.1007/BF02566116
- K\B{o}ichi Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan 11 (1959), 72–75. MR 107005, DOI 10.2969/jmsj/01110072
- Erich Strohhäcker, Beiträge zur Theorie der schlichten Funktionen, Math. Z. 37 (1933), no. 1, 356–380 (German). MR 1545400, DOI 10.1007/BF01474580
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 94 (1985), 77-80
- MSC: Primary 30C45
- DOI: https://doi.org/10.1090/S0002-9939-1985-0781060-7
- MathSciNet review: 781060