AN EXAMPLE IN THE THEORY
OF HYPERCONTRACTIVE SEMIGROUPS

ANDRZEJ KORZENIOWSKI AND DANIEL W. STROOCK

Abstract. Let \(L = x \frac{d^2}{dx^2} + (1-x) \frac{d}{dx} \) on \(C_c((0, \infty)) \) be the Laguerre operator. It is shown that for \(t > 0 \), and \(1 < p < q < \infty \), \(e^{it} : L^p(e^{-x}dx) \to L^q(e^{-x}dx) \) has norm 1 if and only if \(e^{-it} \leq (p-1)/(q-1) \) and the corresponding logarithmic Sobolev constant is not equal to \(2/\lambda \), where \(\lambda \) is the smallest nonzero eigenvalue of \(L \).

Let \((E, \mathcal{F}, m)\) be a probability space and \(\{P_t : t > 0\} \) a conservative Markov semigroup on \(B(E) \) for which \(m \) is a reversible measure (i.e. for each \(t > 0 \), \(P_t \) is symmetric on \(L^2(m) \)). Then, as an easy application of Jensen's inequality,
\[
\|P_t\|_{L^p(m) \to L^p(m)} \leq 1
\]
for all \(t > 0 \) and \(p \in [1, \infty] \). In particular, each \(P_t \) admits a unique extension \(\overline{P_t} \) as a bounded operator on \(L^2(m) \) and \(\{\overline{P_t} : t > 0\} \) is a semigroup of selfadjoint contractions. A well-studied example of this situation is the Ornstein-Uhlenbeck semigroup \(\{\Gamma_t^{(d)} : t > 0\} \) on \(B(R^d) : E = R^d, m(dx) = \gamma(dx) = g(d)(l, x) dx \), and \(P_t = \Gamma_t^{(d)} \) is given by
\[
\Gamma_t^{(d)} f(x) = \int g^{(d)}(1 - e^{-2t}, y - e^{-t}x) f(y) dy
\]
where \(g^{(d)}(\tau, \xi) = (2\pi\tau)^{-d/2} \exp(-|\xi|^2/2\tau) \), \((\tau, \xi) \in (0, \infty) \times R^d \). In connection with his work on constructive field theory, E. Nelson [2] discovered that \(\{\Gamma_t^{(d)} : t > 0\} \) enjoys a hypercontractivity property. Namely, he showed that for given \(1 < p < q < \infty \), \(\|\Gamma_t^{(d)}\|_{L^p(\gamma^{(d)}) \to L^q(\gamma^{(d)})} \leq 1 \) if and only if \(e^{-2t} \leq (p-1)/(q-1) \). In addition, he noted that if \(e^{-2t} > (p-1)/(q-1) \), then \(\|\Gamma_t^{(d)}\|_{L^p(\gamma) \to L^q(\gamma)} = \infty \).

Since Nelson's initial discovery, many other examples of hypercontractive semigroups have been found (cf. F. Weissler [7, 8], F. Weissler and C. Mueller [9], and O. Rothaus [3-5]). In most cases the difficult part of the analysis lies in the attempt to obtain the optimal result (i.e. the smallest \(T(p, q) > 0 \) such that \(\|P_t\|_{L^p(m) \to L^q(m)} \leq 1 \) for all \(t \geq T(p, q) \)). The work of L. Gross [1] shows that this question is closely related to that of finding the smallest \(\alpha > 0 \) for which the logarithmic Sobolev inequality
\[
\int |f|^2 \log |f|^2 dm \leq \alpha \mathcal{E}(f, f) + \|f\|_{L^2(m)}^2 \log \|f\|_{L^2(m)}^2
\]
is satisfied.

Received by the editors March 27, 1984 and, in revised form, June 6, 1984.
1980 Mathematics Subject Classification. Primary 47D05; Secondary 46E30.
Key words and phrases. Laguerre semigroup, logarithmic Sobolev inequality, Ornstein-Uhlenbeck semigroup, hypercontractivity.

1The work of this author was supported in part by N.S.F. Grant MCS 8310542.

©1985 American Mathematical Society
0002-9939/85 $1.00 + $.25 per page
holds, where \mathcal{E} denotes the Dirichlet form associated with $\{P_t: t > 0\}$ (i.e.,
\[\mathcal{E}(f, f) = \sup_{t > 0} \frac{1}{t} (f - P_t f, f)_{L^2(m)} = \lim_{t \to 0} \frac{1}{t} (f - P_t f, f)_{L^2(m)} \]
and $\text{Dom}(\mathcal{E}) = \{f \in L^2(m): \mathcal{E}(f, f) < \infty\}$). Indeed, under mild conditions, Gross's analysis shows that (1) for a given $\alpha > 0$ is equivalent to
\[(1/II P_t II - 1 \alpha^{-1} \leq 1, \quad P_t \text{ is skew-symmetric on } L^\alpha(m) \] (cf. D. Stroock [6, §9], for additional information). Further, Rothaus [3] has shown that the logarithmic Sobolev constant (i.e., the smallest α for which (1) holds) must be at least $2/\lambda$, where
\[(3) \quad \lambda = \inf \{ \mathcal{E}(f, f): \|f\|_{L^2(m)} = 1 \text{ and } \int f \, dm = 0 \} \]
is the gap between 0 and the rest of the spectrum of the generator $\{P_t: t > 0\}$. For the most part, the technique adopted for proving optimality has been to prove that (1) holds with $\alpha = 2/\lambda$ (cf. [9]).

The main purpose of this note is to provide a simple example for which the hypercontractivity constant is not $2/\lambda$. To this end, take: $E = [0, \infty)$, $m(d\rho) = e^{\rho} \, d\rho$, and for locally bounded measurable $f: [0, \infty) \to \mathbb{R}^1$ having subexponential growth at ∞, define $P_t f$ so that
\[(4) \quad P_t f(\rho^2/2) = \left[\frac{r}{\rho} \right] \left(\frac{\rho}{r} \right) \frac{\rho^2}{2}, \quad t > 0 \text{ and } \rho \in [0, \infty), \]
where $\tilde{f}(x) = f(|x|^2/2), x \in \mathbb{R}^2, \text{ and } \omega = \left(\frac{1}{r} \right) \in \mathbb{R}^2$. Then the following facts about $\{P_t: t > 0\}$ are easy to check:
\[(i) \quad \{P_t|_{B(E)}: t > 0\} \text{ is a conservative Markov semigroup,} \]
\[(ii) \quad \text{for each } t > 0, P_t \text{ is symmetric on } L^2(m). \]

\begin{lemma}
Let $1 < p < q < \infty$ and $t > 0$ be given. If $e^{-t} \leq (p - 1)/(q - 1)$, then $\|P_t\|_{L^p(m) \to L^q(m)} \leq 1$. If $e^{-t} > (p - 1)/(q - 1)$, then $\|P_t\|_{L^p(m) \to L^q(m)} = \infty$.
\end{lemma}

\begin{proof}
Note that for any $r \in [1, \infty)$ and any measurable $g: [0, \infty) \to \mathbb{R}^1$, $\|g\|_{L^r(m)} = \|\tilde{g}\|_{L^r(\gamma^{(2)})}$. Also, observe that for any locally bounded $f: [0, \infty) \to \mathbb{R}^1$ having subexponential growth at ∞, $\Gamma_{t, 2}^{(2)} \tilde{f} = P_t \tilde{f} > 0$. Thus, $\|P_t\|_{L^p(m) \to L^q(m)} \leq 1$ is equivalent to $\|\Gamma_{t, 2}^{(2)} \tilde{f}\|_{L^q(\gamma^{(2)})} \leq \|\tilde{f}\|_{L^q(\gamma^{(2)})}$ for all locally bounded measurable $f: [0, \infty) \to \mathbb{R}^1$ which have subexponential growth at ∞. In particular, by Nelson's inequality, $\|P_t\|_{L^p(m) \to L^q(m)} \leq 1$ if $e^{-t} \leq (p - 1)/(q - 1)$. To prove that $\|P_t\|_{L^p(m) \to L^q(m)} = \infty$ if $e^{-t} > (p - 1)/(q - 1)$, consider the functions $f_\lambda(\rho) = \exp(21/2 \lambda^2 \rho^2 - \lambda^2/2)$ for $\lambda > 0$. In view of the preceding considerations, we need only check that
\[
\lim_{\lambda \to \infty} \frac{\Gamma_{t, 2}^{(2)} \tilde{f}_\lambda}{\|\tilde{f}_\lambda\|_{L^q(\gamma^{(2)})}} = \infty
\]
when \((p - 1)/(q - 1) > e^{-t}\). By straightforward computation, one can easily see that
\[
\left(\frac{\pi}{2}\right)^{1/2} r \lambda \exp\left(\lambda^2 (r - 1)/2\right) \leq \|f_\lambda\|_{L^q(m)} \leq \left(1 + \left(2\pi\right)^{1/2} r \lambda\right)^{1/r} \exp\left(\lambda^2 (r - 1)/2\right)
\]
for any \(\lambda > 0\) and \(r \in (1, \infty)\). At the same time,
\[
\left[\Gamma_{t/2} f_\lambda\right](x) \geq \sup_{\theta \in S^1} \left[\Gamma_{t/2} g_{e^{i\theta}}\right](x) = \sup_{\theta \in S^1} g_{e^{i\theta}}(x) = f_{e^{i\theta}}(x),
\]
where \(g_\eta(x) = \exp(\eta \cdot x - |\eta|^2/2)\) for \(\eta \in \mathbb{R}^2\) and we have used the fact that \(\Gamma_{s}(g_\eta) = g_{e^{-s}\eta}\) for all \(s > 0\) and \(\eta \in \mathbb{R}^2\). After combining these, one easily arrives at the desired conclusion. Q.E.D.

To complete our analysis, we must compute the \(\lambda\) associated with \(\{P_t: t > 0\}\). To this end, let \(\{Y_n: n > 0\}\) be the normalized Laguerre polynomials (i.e. the normalized orthogonal polynomials on \([0, \infty)\) with respect to \(m\)) and define \(Y_n = \mathbb{R}^2\) on \(C^\infty(\mathbb{R}^2)\). Then, as is well known,
\[
\begin{align*}
\rho \frac{d^2 Y_n}{d \rho^2}(\rho) + (1 - \rho) \frac{d Y_n}{d \rho}(\rho) &= -n Y_n(\rho), \quad n \geq 0 \text{ and } \rho \in [0, \infty).
\end{align*}
\]
From this, it is an easy matter to check that
\[
H \tilde{Y}_n = -2n \tilde{Y}_n, \quad n \geq 0.
\]
Since \(\Gamma_{t/2} f = \int_0^t \Gamma_s^{(2)} H f \, ds, \quad t > 0,\) for all polynomials \(f: \mathbb{R}^2 \to \mathbb{R}\), we conclude that
\[
\Gamma_{t/2} \tilde{Y}_n = e^{-nt} \tilde{Y}_n
\]
and therefore that
\[
P_t Y_n = e^{-nt} Y_n
\]
for all \(t > 0\) and \(n \geq 0\). As an immediate consequence, we now have that
\[
P_t f = \sum_{n=0}^\infty e^{-nt}(f, Y_n)_{L^2(m)} Y_n, \quad t > 0 \text{ and } f \in L^2(m).
\]
In particular, the Dirichlet form \(\mathcal{E}\) for \(\{P_t: t > 0\}\) is given by
\[
\mathcal{E}(f, f) = \sum_{n=1}^\infty n(f, Y_n)_{L^2(m)}^2, \quad f \in L^2(m),
\]
and so the corresponding gap \(\lambda\) is 1.

By combining Gross's analysis, Lemma (6) and the preceding, we now have the following result.

(7) THEOREM. Let \(m(d\rho) = e^{-\rho} d\rho\) on \([0, \infty)\) and define \(P_t, t > 0,\) by (4). Then \(\{P_t: t > 0\}\) is a conservative Markov semigroup which is symmetric in \(L^2(m)\). Let \(\{P_t: t > 0\}\) be the semigroup of \(L^2(m)\)-selfadjoint contractions determined by \(\{P_t: t > 0\}\) and denote by \(\mathcal{E}\) the associated Dirichlet form. Then
\[
1 = \inf \left\{ \mathcal{E}(f, f) : f \in L^2(m), \|f\|_{L^2(m)} = 1 \text{ and } \int f \, dm = 0 \right\},
\]
On the other hand, the logarithmic Sobolev constant for \(\mathcal{E}\) (i.e. the smallest \(\alpha\) for which (2) holds) is 4.
Remark. The semigroup \(\{ P_t : t > 0 \} \) in Theorem (7) can be described directly in terms of the Laguerre operator

\[
L = \rho \frac{d^2}{d\rho^2} + (1 - \rho) \frac{d}{d\rho} \quad \text{on} \; C_\infty^\infty((0, \infty)).
\]

Indeed, \(\{ P_t : t > 0 \} \) is the unique conservative Markov semigroup on \(C_\infty^\infty((0, \infty)) \) such that

\[
P_t f - f = \int_0^t P_s L f \, ds, \quad t \geq 0,
\]

for all \(f \in C_\infty^\infty((0, \infty)) \). Thus there are several reasons for calling \(\{ P_t : t > 0 \} \) the Laguerre semigroup. In this connection it is natural to suspect that the reason why, in this example, the logarithmic Sobolev constant \(\alpha_0 \) and the spectral gap \(\lambda \) do not satisfy \(\alpha_0 = 2/\lambda \) may have something to do with the way in which \(L \) degenerates at 0.

References

Department of Mathematics, University of Texas, Arlington, Texas 76019

Department of Mathematics, University of Colorado, Boulder, Colorado 80209

Current address (D. W. Stroock): Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139