Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society, the Proceedings of the American Mathematical Society (PROC) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Homogeneous minimal surfaces in Euclidean spheres with flat normal connections
HTML articles powered by AMS MathViewer

by Kichoon Yang PDF
Proc. Amer. Math. Soc. 94 (1985), 119-122 Request permission

Abstract:

We classify, up to congruence, homogeneous minimal surfaces in Euclidean spheres with flat normal connections. The parameter varieties in the space of contact invariants of E. Cartan are computed for all codimensions.
References
    E. Cartan, Théorie des groupe finis et continues et la géométrie différentielle traitées par la méthode du repère mobile, Gauthier-Villars, Paris, 1937. —, Les systèmes différentiels extérieurs et leurs applications géométriques, Hermann, Paris, 1945.
  • Wu-yi Hsiang, Remarks on closed minimal submanifolds in the standard Riemannian $m$-sphere, J. Differential Geometry 1 (1967), 257–267. MR 225244
  • Gary R. Jensen, Higher order contact of submanifolds of homogeneous spaces, Lecture Notes in Mathematics, Vol. 610, Springer-Verlag, Berlin-New York, 1977. MR 0500648
  • K. Yang, Prolongations of exterior differential systems, preprint 1982.
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C42, 58A17
  • Retrieve articles in all journals with MSC: 53C42, 58A17
Additional Information
  • © Copyright 1985 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 94 (1985), 119-122
  • MSC: Primary 53C42; Secondary 58A17
  • DOI: https://doi.org/10.1090/S0002-9939-1985-0781068-1
  • MathSciNet review: 781068