Solvability of differential equations with linear coefficients of nilpotent type
HTML articles powered by AMS MathViewer
- by Rainer Felix
- Proc. Amer. Math. Soc. 94 (1985), 161-166
- DOI: https://doi.org/10.1090/S0002-9939-1985-0781075-9
- PDF | Request permission
Abstract:
Let $L$ be the vector field on ${{\mathbf {R}}^n}$ associated with a real nilpotent $(n \times n)$-matrix. It is shown that $L$ regarded as a differential operator defines a surjective mapping of the space $\mathcal {S}’$ of tempered distributions onto itself; i.e. $L\mathcal {S}’({{\mathbf {R}}^n}) = \mathcal {S}’({{\mathbf {R}}^n})$. Replacing $\mathcal {S}’$ by the space $\mathcal {D}’$ of ordinary distributions, this is not true in general.References
- R. Barrà, Divergences et distributions invariantes, Thèse de ${3^e}$ cycle, ${n^o}$ 723, Université de Poitiers, 1978.
- Raymond Barra, Fonctions divergences et distributions invariantes, Bull. Sci. Math. (2) 105 (1981), no. 1, 49–71 (French, with English summary). MR 615290
- Raymond Barra, Fonctions divergences et distributions invariantes. II, Bull. Sci. Math. (2) 107 (1983), no. 2, 209–217 (French, with English summary). MR 704726 —, Distributions invariantes. III, Preprint.
- Jacques Dixmier, Sur les distributions invariantes par un groupe nilpotent, C. R. Acad. Sci. Paris Sér. A-B 285 (1977), no. 1, A7–A10. MR 439986
- R. Felix, Das Syntheseproblem für invariante Distributionen, Invent. Math. 65 (1981/82), no. 1, 85–96 (German). MR 636881, DOI 10.1007/BF01389296
- Sigurdur Helgason, The Radon transform, 2nd ed., Progress in Mathematics, vol. 5, Birkhäuser Boston, Inc., Boston, MA, 1999. MR 1723736, DOI 10.1007/978-1-4757-1463-0 C. S. Herz, Analyse harmonique à plusieurs variables, Publ. Math. Orsay, 1965.
- C. S. Herz, Functions which are divergences, Amer. J. Math. 92 (1970), 641–656. MR 290409, DOI 10.2307/2373366
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 94 (1985), 161-166
- MSC: Primary 22E30; Secondary 22E25, 35A99, 46F99
- DOI: https://doi.org/10.1090/S0002-9939-1985-0781075-9
- MathSciNet review: 781075