A group-theoretic characterization of $M$-groups
HTML articles powered by AMS MathViewer
- by Alan E. Parks
- Proc. Amer. Math. Soc. 94 (1985), 209-212
- DOI: https://doi.org/10.1090/S0002-9939-1985-0784164-8
- PDF | Request permission
Abstract:
Groups having the property that all their complex irreducible characters are monomial are characterized in terms of the embedding of cyclic sections of the group.References
- T. R. Berger, Representation theory and solvable groups: length type problems, The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979) Proc. Sympos. Pure Math., vol. 37, Amer. Math. Soc., Providence, R.I., 1980, pp. 431–441. MR 604618
- Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, Vol. XI, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0144979
- B. Huppert, Endliche Gruppen. I, Die Grundlehren der mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967 (German). MR 0224703, DOI 10.1007/978-3-642-64981-3
- I. Martin Isaacs, Character theory of finite groups, Pure and Applied Mathematics, No. 69, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976. MR 0460423
- I. Martin Isaacs, Primitive characters, normal subgroups, and $M$-groups, Math. Z. 177 (1981), no. 2, 267–284. MR 612879, DOI 10.1007/BF01214205
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 94 (1985), 209-212
- MSC: Primary 20C15; Secondary 20D10
- DOI: https://doi.org/10.1090/S0002-9939-1985-0784164-8
- MathSciNet review: 784164