Strong limit theorems for orthogonal sequences in von Neumann algebras
HTML articles powered by AMS MathViewer
- by R. Jajte
- Proc. Amer. Math. Soc. 94 (1985), 229-235
- DOI: https://doi.org/10.1090/S0002-9939-1985-0784169-7
- PDF | Request permission
Abstract:
Let $A$ be a von Neumann algebra with a faithful normal state $\phi$. It is shown that if a sequence $({x_n})$ in $A$ is orthogonal relative to $\phi$ and satisfies the condition \[ \sum \limits _{k} {\phi (|{x_k}{|^2}){{\left ( {\frac {{\log k}}{k}} \right )}^2} < \infty ,} \] then ${}_n^1\sum \nolimits _{k = 1}^n {{x_k} \to 0}$ almost uniformly in $A$. Some other results related to this theorem are also discussed.References
- L. Acardi, A. Frigerio and J. T. Lewis, Quantum stochastic processes, Comm. Dublin Inst. Adv. Stud. Ser. A 29 (1980).
- G. Alexits, Convergence problems of orthogonal series, International Series of Monographs in Pure and Applied Mathematics, Vol. 20, Pergamon Press, New York-Oxford-Paris, 1961. Translated from the German by I. Földer. MR 0218827
- C. J. K. Batty, The strong law of large numbers for states and traces of a $W^{\ast }$-algebra, Z. Wahrsch. Verw. Gebiete 48 (1979), no. 2, 177–191. MR 534843, DOI 10.1007/BF01886871
- Nghiêm Đặng Ngọc, Pointwise convergence of martingales in von Neumann algebras, Israel J. Math. 34 (1979), no. 4, 273–280 (1980). MR 570886, DOI 10.1007/BF02760608
- M. Sh. Gol′dshteĭn, Theorems on almost everywhere convergence in von Neumann algebras, J. Operator Theory 6 (1981), no. 2, 233–311 (Russian). MR 643693
- Burkhard Kümmerer, A non-commutative individual ergodic theorem, Invent. Math. 46 (1978), no. 2, 139–145. MR 482260, DOI 10.1007/BF01393251
- E. Christopher Lance, Ergodic theorems for convex sets and operator algebras, Invent. Math. 37 (1976), no. 3, 201–214. MR 428060, DOI 10.1007/BF01390319 A. Łuczak, Some limit theorems in von Neumann algebras, preprint.
- A. R. Padmanabhan, Convergence in measure and related results in finite rings of operators, Trans. Amer. Math. Soc. 128 (1967), 359–378. MR 212581, DOI 10.1090/S0002-9947-1967-0212581-7 M. Plancherel, Sur la convergence des series de fonctions orthogonal, C. R. Acad. Sci. Paris 157 (1913), 270-278.
- Masamichi Takesaki, Theory of operator algebras. I, Springer-Verlag, New York-Heidelberg, 1979. MR 548728
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 94 (1985), 229-235
- MSC: Primary 46L50; Secondary 60B12, 82A15
- DOI: https://doi.org/10.1090/S0002-9939-1985-0784169-7
- MathSciNet review: 784169