On the multiplicities of the powers of a Banach space operator
HTML articles powered by AMS MathViewer
- by Domingo A. Herrero
- Proc. Amer. Math. Soc. 94 (1985), 239-243
- DOI: https://doi.org/10.1090/S0002-9939-1985-0784171-5
- PDF | Request permission
Abstract:
The multiplicities of the powers of a bounded linear operator $T$, acting on a complex separable infinite-dimensional Banach space $\mathfrak {X}$, satisfy the inequalities \[ ( * * )\qquad \mu ({T^n}) \leqslant \mu ({T^{hn}}) \leqslant h\mu ({T^n})\quad {\text {for}}\;{\text {all}}\;h,n \geqslant 1.\] Nothing else can be said, in general, because simple examples show that for each sequence $\{ {\mu _n}\} _{n = 1}^\infty$, satisfying the inequalities $( * * )$, there exists $T$ acting on $\mathfrak {X}$ such that $\mu ({T^n}) = {\mu _n}$ for all $n \geqslant 1$.References
- Joseph Bram, Subnormal operators, Duke Math. J. 22 (1955), 75–94. MR 68129
- Jürg T. Marti, Introduction to the theory of bases, Springer Tracts in Natural Philosophy, Vol. 18, Springer-Verlag New York, Inc., New York, 1969. MR 0438075
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 94 (1985), 239-243
- MSC: Primary 47A99; Secondary 47B10
- DOI: https://doi.org/10.1090/S0002-9939-1985-0784171-5
- MathSciNet review: 784171