The strong limit of von Neumann subalgebras with conditional expectations
HTML articles powered by AMS MathViewer
- by Makoto Tsukada
- Proc. Amer. Math. Soc. 94 (1985), 259-264
- DOI: https://doi.org/10.1090/S0002-9939-1985-0784175-2
- PDF | Request permission
Abstract:
The strong lower limit and the weak upper limit of a net of von Neumann subalgebras on which the conditional expectations exist with respect to a fixed faithful normal state are defined. The limits coincide if and only if the corresponding conditional expectations converge strongly.References
- Huzihiro Araki, Some properties of modular conjugation operator of von Neumann algebras and a non-commutative Radon-Nikodym theorem with a chain rule, Pacific J. Math. 50 (1974), 309–354. MR 350437
- Fumio Hiai and Makoto Tsukada, Strong martingale convergence of generalized conditional expectations on von Neumann algebras, Trans. Amer. Math. Soc. 282 (1984), no. 2, 791–798. MR 732120, DOI 10.1090/S0002-9947-1984-0732120-1
- Masamichi Takesaki, Conditional expectations in von Neumann algebras, J. Functional Analysis 9 (1972), 306–321. MR 0303307, DOI 10.1016/0022-1236(72)90004-3
- Makoto Tsukada, Convergence of closed convex sets and $\sigma$-fields, Z. Wahrsch. Verw. Gebiete 62 (1983), no. 1, 137–146. MR 684213, DOI 10.1007/BF00532167
- Makoto Tsukada, Strong convergence of martingales in von Neumann algebras, Proc. Amer. Math. Soc. 88 (1983), no. 3, 537–540. MR 699429, DOI 10.1090/S0002-9939-1983-0699429-6
- Makoto Tsukada, Convergence of best approximations in a smooth Banach space, J. Approx. Theory 40 (1984), no. 4, 301–309. MR 740641, DOI 10.1016/0021-9045(84)90003-0
- Hisaharu Umegaki, Conditional expectation in an operator algebra, Tohoku Math. J. (2) 6 (1954), 177–181. MR 68751, DOI 10.2748/tmj/1178245177
- Hisaharu Umegaki, Conditional expectation in an operator algebra. II, Tohoku Math. J. (2) 8 (1956), 86–100. MR 90789, DOI 10.2748/tmj/1178245011
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 94 (1985), 259-264
- MSC: Primary 46L50; Secondary 46L10, 46L30
- DOI: https://doi.org/10.1090/S0002-9939-1985-0784175-2
- MathSciNet review: 784175