The factorization of a linear conjugate symmetric involution in Hilbert space
HTML articles powered by AMS MathViewer
- by James W. Moeller
- Proc. Amer. Math. Soc. 94 (1985), 269-272
- DOI: https://doi.org/10.1090/S0002-9939-1985-0784177-6
- PDF | Request permission
Erratum: Proc. Amer. Math. Soc. 97 (1986), 568.
Abstract:
Let $X$ be a closed linear transformation whose domain is dense in the complex separable Hilbert space $H$ and whose adjoint is denoted by ${X^ * }$. The operator $X$ is said to be conjugate symmetric if $\Gamma (X) \subset \Gamma (Q{X^ * }Q)$, where $\Gamma (X)$ represents the graph of $X$ in $H \otimes H$ and $Q$ is a conjugation on $H$. The main theorem in this note states that a conjugate symmetric linear involution $X$ satisfies the operator equation $X = Q{X^ * }Q$.References
- Nelson Dunford and Jacob T. Schwartz, Linear operators. Part I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. General theory; With the assistance of William G. Bade and Robert G. Bartle; Reprint of the 1958 original; A Wiley-Interscience Publication. MR 1009162
- L. M. Falicov, Group theory and its physical applications, University of Chicago Press, Chicago, Ill.-London, 1966. Notes compiled by A. Luehrmann. MR 0205615
- Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 0203473
- James W. Moeller, A double commutant theorem for conjugate selfadjoint operators, Proc. Amer. Math. Soc. 83 (1981), no. 3, 506–508. MR 627679, DOI 10.1090/S0002-9939-1981-0627679-1
- J. von Neumann, Über adjungierte Funktionaloperatoren, Ann. of Math. (2) 33 (1932), no. 2, 294–310 (German). MR 1503053, DOI 10.2307/1968331
- Heydar Radjavi and Peter Rosenthal, Invariant subspaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 77, Springer-Verlag, New York-Heidelberg, 1973. MR 0367682
- Frigyes Riesz and Béla Sz.-Nagy, Functional analysis, Frederick Ungar Publishing Co., New York, 1955. Translated by Leo F. Boron. MR 0071727
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 94 (1985), 269-272
- MSC: Primary 47B25
- DOI: https://doi.org/10.1090/S0002-9939-1985-0784177-6
- MathSciNet review: 784177