Minimal solutions of the heat equation and uniqueness of the positive Cauchy problem on homogeneous spaces
HTML articles powered by AMS MathViewer
- by A. Korányi and J. C. Taylor
- Proc. Amer. Math. Soc. 94 (1985), 273-278
- DOI: https://doi.org/10.1090/S0002-9939-1985-0784178-8
- PDF | Request permission
Abstract:
The minimal positive solutions of the heat equation on $X \times ( - \infty ,T)$ are determined for $X$ a homogeneous Riemannian space. A simple proof of uniqueness for the positive Cauchy problem on a homogeneous space is given using Choquet’s theorem and the explicit form of these solutions.References
- Shmuel Agmon, On positive solutions of elliptic equations with periodic coefficients in $\textbf {R}^n$, spectral results and extensions to elliptic operators on Riemannian manifolds, Differential equations (Birmingham, Ala., 1983) North-Holland Math. Stud., vol. 92, North-Holland, Amsterdam, 1984, pp. 7–17. MR 799327, DOI 10.1016/S0304-0208(08)73672-7
- D. G. Aronson, Non-negative solutions of linear parabolic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 22 (1968), 607–694. MR 435594
- Jeff Cheeger, Mikhail Gromov, and Michael Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential Geometry 17 (1982), no. 1, 15–53. MR 658471
- Corneliu Constantinescu and Aurel Cornea, Potential theory on harmonic spaces, Die Grundlehren der mathematischen Wissenschaften, Band 158, Springer-Verlag, New York-Heidelberg, 1972. With a preface by H. Bauer. MR 0419799, DOI 10.1007/978-3-642-65432-9
- J. L. Doob, Relative limit theorems in analysis, J. Analyse Math. 8 (1960/61), 289–306. MR 125974, DOI 10.1007/BF02786853
- Avner Friedman, On the uniqueness of the Cauchy problem for parabolic equations, Amer. J. Math. 81 (1959), 503–511. MR 104907, DOI 10.2307/2372754 Y. Guivarc’h, Sur le représentation intégrale des fonctions harmoniques et des fonctions propres positives dans un éspace Riemannien symetrique, Bull. Sci. Math. (to appear).
- F. I. Karpelevič, The geometry of geodesics and the eigenfunctions of the Beltrami-Laplace operator on symmetric spaces, Trans. Moscow Math. Soc. 1965 (1967), 51–199. Amer. Math. Soc., Providence, R.I., 1967. MR 0231321
- Adam Korányi and J. C. Taylor, Fine convergence and parabolic convergence for the Helmholtz equation and the heat equation, Illinois J. Math. 27 (1983), no. 1, 77–93. MR 684542
- N. V. Krylov and M. V. Safonov, A property of the solutions of parabolic equations with measurable coefficients, Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), no. 1, 161–175, 239 (Russian). MR 563790
- Bernard Mair and J. C. Taylor, Integral representation of positive solutions of the heat equation, Théorie du potentiel (Orsay, 1983) Lecture Notes in Math., vol. 1096, Springer, Berlin, 1984, pp. 419–433. MR 890370, DOI 10.1007/BFb0100123
- Jürgen Moser, A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math. 17 (1964), 101–134. MR 159139, DOI 10.1002/cpa.3160170106
- Murray H. Protter and Hans F. Weinberger, Maximum principles in differential equations, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1967. MR 0219861
- Neil S. Trudinger, Pointwise estimates and quasilinear parabolic equations, Comm. Pure Appl. Math. 21 (1968), 205–226. MR 226168, DOI 10.1002/cpa.3160210302
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 94 (1985), 273-278
- MSC: Primary 58G11; Secondary 35K05, 43A85
- DOI: https://doi.org/10.1090/S0002-9939-1985-0784178-8
- MathSciNet review: 784178