BEST MONOTONE APPROXIMATION IN $L_1[0, 1]$

ROBERT HUOTARI AND DAVID LEGG

Abstract. If f is a bounded Lebesgue measurable function on $[0, 1]$ and $1 < p < \infty$, let f_p denote the best L_p-approximation to f by nondecreasing functions. It is shown that f_p converges almost everywhere as p decreases to one to a best L_1-approximation to f by nondecreasing functions. The set of best L_1-approximations to f by nondecreasing functions is shown to include its supremum and infimum.

Let $\Omega = [0, 1]$, $\mu =$ Lebesgue measure and $\mathcal{A} =$ the Lebesgue measurable subsets of Ω. For $1 \leq p \leq \infty$, let $L_p = L_p(\Omega, \mathcal{A}, \mu)$. Let M denote the set of all nondecreasing functions on Ω. Suppose $f \in L_\infty$. For $1 < p < \infty$, L_p is a uniformly convex Banach space and M is a closed convex subset thereof, so f has a unique best L_p-approximation f_p by elements of M, i.e., f_p is the unique element of M which satisfies

$$\|f - f_p\|_p = \inf\{\|f - h\|_p: h \in M\}.$$

The function f is said to have the Polya property if $\lim_{p \to \infty} f_p$ exists almost everywhere as a bounded measurable function and the Polya-one property if $\lim_{p \to 1} f_p$ exists in the same way. The Polya property fails for an arbitrary f in $L_\infty [2, 1]$ but, as is shown in this note, the Polya-one property obtains.

If B is a subset of L_1, let $\mu_1(f|B)$ denote the set of all best L_1-approximations of f in B and let $f(B) = \inf\mu_1(f|B)$, $\tilde{f}(B) = \sup\mu_1(f|B)$. If \mathcal{B} is a subsigma algebra of \mathcal{A} and B is the subspace of L_1 consisting of all \mathcal{B}-measurable functions, then $f(B)$ and $\tilde{f}(B)$ are in $\mu_1(f|B)$ and $g \in \mu_1(f|B)$ if and only if $f(B) \leq g \leq \tilde{f}(B)$ [5]. Let $f = f(M)$ and $\tilde{f} = \tilde{f}(M)$. In this note we show that $f, \tilde{f} \in \mu_1(f|M)$ and that every convex combination of f and \tilde{f} is in $\mu_1(f|M)$ (so that f and \tilde{f} are extreme points of the L_1-compact convex set $\mu_1(f|M)$), but there may be a function $g \in M$ such that $f \leq g \leq \tilde{f}$ but g is not in $\mu_1(f|M)$.

Lemma 1. M is an L_1-closed convex subset of L_1, and $\mu_1(f|M)$ is a nonempty subset of L_∞.

Proof. Suppose $\{g_n: n = 1, 2, \ldots \} \subset M$ and $g_n \to g$ in L_1. Since $\{g_n\}$ has a subsequence which converges to g almost everywhere, we may assume that $g_n \to g$ almost everywhere. Let $\tilde{g} = \limsup_{n \to \infty} g_n$. Since each g_n is nondecreasing, \tilde{g} is nondecreasing. Thus g is equivalent to an element of M. Clearly M is convex.
Lemma 4 in [1] shows that \(\mu_1(f|M) \) is nonempty. If \(g \in \mu_1(f|M) \), it is clear that \(\|g\|_\infty \leq \|f\|_\infty \) so \(\mu_1(f|M) \subset L_\infty \). This establishes Lemma 1.

The next theorem shows that every bounded measurable function has the Polya-one property when \(M \) is the set from which best approximations are chosen. Let \(f_1 = m_1(f|M) \), the unique element of \(\mu_1(f|M) \) which minimizes

\[
\left\{ \int |f - h| \ln |f - h| : h \in \mu_1(f|M) \right\}.
\]

The function \(f_1 \) is termed by Landers and Rogge [4] the "natural" best \(L_1 \)-approximation.

THEOREM 2. If \(f \in L_\infty \), then \(f_p \) converges almost everywhere as \(p \) decreases to one to an element of \(\mu_1(f|M) \).

PROOF. We claim that \(f_p \to f_1 \) almost everywhere as \(p \downarrow 1 \). Suppose this is not the case. Then there exists a sequence \(\{p_n\} \) such that \(p_n \downarrow 1 \) and a set \(E \subset \Omega \) with \(\mu E > 0 \) and, for each \(x \) in \(E, f_{p_n}(x) \) does not converge to \(f_1(x) \).

Since \(f_1 \) is nondecreasing, the set of points of discontinuity of \(f_1 \) is at most countable. Thus there is a point \(y \) in \(\Omega \) at which \(f_1 \) is continuous but \(f_{p_n}(y) \) does not converge to \(f_1(y) \), whence there exists a subsequence \(\{q_n\} \) of \(\{p_n\} \) such that

\[
\lim_{n \to \infty} f_{q_n}(y) = d \neq f_1(y).
\]

By [4, Theorem 2], \(f_{q_n} \) converges strongly in \(L_1 \) to \(f_1 \). Thus, there exists a subsequence \(\{r_n\} \) of \(\{q_n\} \) such that \(f_{r_n} \to f_1 \) a.e. By Helly's Theorem [3, p. 221], there exist a nondecreasing function \(h \) and a subsequence \(\{s_n\} \) of \(\{r_n\} \) such that \(f_{s_n} \to h \) pointwise. Since \(f_{s_n} \to f_1 \) a.e., \(f_1 = h \) a.e. Since \(h(y) = d \), \(f_1 \) is continuous at \(y \) and \(h \) is nondecreasing, \(\mu[f_1 \neq h] > 0 \), a contradiction. This establishes Theorem 2.

For functions \(g, h : \Omega \to R \), let \(g \vee h \) be defined by \(g \vee h(x) = \max\{g(x), h(x)\} \). Replacing \(\max \) by \(\min \) defines \(g \wedge h \). Let \(C(g) \) denote the set of points of continuity of \(g \).

LEMMA 3. If \(g, h \in \mu_1(f|M) \), then \(g \vee h \) and \(g \wedge h \) are in \(\mu_1(f|M) \).

PROOF. Clearly \(g \vee h \) and \(g \wedge h \) are in \(M \). Our proof that they are also best \(L_1 \)-approximations of \(f \) will rely on the fact that each of the sets \([g > h]\) and \([g < h]\) is equivalent to an open set.

Let \(A = (0,1) \cap [g > h] \cap C(g) \cap C(h) \). Then \(\mu A = |g > h| \). For a given \(y \) in \(A \), let

\[
s = \begin{cases} \sup\{x < y : g(x) < h(x)\} & \text{if the set is nonempty,} \\ 0 & \text{otherwise,} \end{cases}
\]

and let

\[
t = \begin{cases} \inf\{x > y : g(x) < h(x)\} & \text{if the set is nonempty,} \\ 1 & \text{otherwise.} \end{cases}
\]

Then \(s < y < t \) and \(g > h \) on \((s, t)\). In any interval of the form \((t, z)\), there exists a point \(w \) such that \(h(w) \geq g(w) \) so, for \(x \geq w \), \(h(x) \geq h(w) \geq g(w) \geq g(t) \), whence

\[
\lim_{x \downarrow t} h(x) = g(t).
\]
Define \(\theta \in M \) by

\[
\theta(x) = \begin{cases}
 h(x), & 0 \leq x \leq s, \\
 g(x), & s < x < t, \\
 \lim_{z \downarrow t} h(z), & x = t, \\
 h(x), & t < x \leq 1.
\end{cases}
\]

(1)

If \(\int_s^t |f - g| < \int_s^t |f - h| \), then

\[
\int_0^1 |f - \theta| = \int_0^s |f - h| + \int_s^t |f - g| + \int_t^1 |f - h| < \int_0^1 |f - h|,
\]

a contradiction. Thus \(\int_s^t |f - g| \geq \int_s^t |f - h| \). A similar argument shows that \(\int_s^t |f - g| \leq \int_s^t |f - h| \), and we see that \(\theta \in \mu_1(f|M) \).

Since \(y \) in \(A \) was arbitrary, the above arguments show that \(A \) is contained in a disjoint union of intervals \(\bigcup (s_i, t_i) \) such that \(g > h \) on \((s_i, t_i) \) for each \(i \), and in each interval of the form \((z, s_i) \) or \((t_i, z) \) there exists a point \(w \) such that \(h(w) > g(w) \).

Define \(\theta_n \) in \(M \) by replacing \(s \) by \(s_n \) and \(t \) by \(t_n \) in (1) and, for \(n > 1 \), define \(\theta_n \) by

\[
\theta_n(x) = \begin{cases}
 \theta_{n-1}(x), & 0 \leq x \leq s_n, \\
 g(x), & s_n < x < t_n, \\
 \lim_{z \downarrow t_n} \theta_{n-1}(z), & x = t_n, \\
 \theta_{n-1}(x), & t_n < x \leq 1.
\end{cases}
\]

Let \(\psi = \lim_{n \to \infty} \theta_n \). Then \(\psi \) is equivalent to \(g \lor h \) and, by the Dominated Convergence Theorem, \(\psi \in \mu_1(f|M) \). Thus \(g \lor h \in \mu_1(f|M) \).

The proof that \(g \land h \in \mu_1(f|M) \) is similar. This establishes Lemma 3.

If \(\{ g_n \} \subset \mu_1(f|M) \), then, by Helly’s Theorem, there is a subsequence \(\{ h_n \} \) of \(\{ g_n \} \) and there is a function \(h \in M \) such that \(h_n \to h \) pointwise. Since \(\{ h_n \} \) is uniformly bounded \(h_n \to h \) in \(L_1 \). Since \(h \in \mu_1(f|M) \), \(\mu_1(f|M) \) is \(L_1 \)-compact. A simple calculation shows that \(\mu_1(f|M) \) is convex. By the Krein-Milman Theorem, \(\mu_1(f|M) \) is the closed convex hull of its extreme points. The following theorem describes two of the extreme points of \(\mu_1(f|M) \).

Theorem 4. Each of the nondecreasing functions \(f \) and \(f \) is an element of \(\mu_1(f|M) \).

Proof. Let \(\{ r_i : i = 1, 2, \ldots \} \) be an enumeration of the rationals in \(\Omega \). Given \(i \), choose a sequence \(\{ g_n \} \subset \mu_1(f|M) \) such that

\[
\lim_{n \to \infty} g_n(r_i) = \sup \{ g(r_i) : g \in \mu_1(f|M) \}.
\]

By Helly’s Theorem, there exist a nondecreasing function \(g \) and a subsequence of \(\{ g_n \} \) which converges to \(g \) pointwise. By the Dominated Convergence Theorem, \(g^n \in \mu_1(f|M) \). Let \(h^n = g^1 \lor g^2 \lor \cdots \lor g^n \). Lemma 3 and induction show that \(h^n \in \mu_1(f|M) \). Again by Helly’s Theorem, there exist \(h \) and \(M \) and a subsequence of \(\{ h^n \} \) which converges to \(h \) pointwise. As above, \(h \in \mu_1(f|M) \).

We now claim that \(h = \sup \mu_1(f|M) \) almost everywhere. Indeed, if \(x \) is rational, clearly \(h(x) = \sup \{ g(x) : g \in \mu_1(f|M) \} \). Suppose that \(x \in C(h) \) but \(h(x) < \sup \{ g(x) : g \in \mu_1(f|M) \} \). Then there exists a function \(g_0 \in \mu_1(f|M) \) such that
$h(x) < g_0(x)$. Since x is in $C(h)$ and g_0 is in M, there exists an interval I of the form (y, x) or (x, z) such that $h \neq \sup \mu_1(f|M)$ on I. Since I contains a rational, this is impossible. Thus $h = \sup \mu_1(f|M)$ on $C(h)$. But $\mu C(h) = 1$.

The proof that $f \in \mu_1(f|M)$ is similar. This establishes Theorem 4.

We conclude with two examples. Let $f = I_{[0, 1/2]}$, the indicator function of $[0, 1/2]$. Then $f = 1$, $g = 0$, and $g(x) = x$ satisfies $f \leq g \leq \hat{f}$ but $\int_0^1 |f - g| > \int_0^1 |f - \hat{f}|$. Thus g is not in $\mu_1(f|M)$, so the conjecture that the result of Shintani and Ando mentioned above extends to the case where \mathcal{B} is any subsigma lattice is shown to be false.

Another possible conjecture is that $\mu_1(f|M)$ is exactly the set of all convex combinations of f and \hat{f}, i.e., f and \hat{f} constitute the set of extreme points of $\mu_1(f|M)$. This conjecture also fails: let $f = I_{[0, 1/4]} + 3I_{[1/2, 3/4]} + 2I_{[3/4, 1]}$. Then the function $g = I_{[0, 1/2]} + 2I_{[1/2, 1]}$ is in $\mu_1(f|M)$ but is not a convex combination of f and \hat{f}. Thus, a problem that remains open is to characterize the set of extreme points of $\mu_1(f|M)$.

References

Department of Mathematical Sciences, Indiana University - Purdue University, Fort Wayne, Indiana 46805