Sturmian theorems for second order systems
HTML articles powered by AMS MathViewer
- by W. Allegretto
- Proc. Amer. Math. Soc. 94 (1985), 291-296
- DOI: https://doi.org/10.1090/S0002-9939-1985-0784181-8
- PDF | Request permission
Abstract:
Sturmian theorem are established for weakly coupled elliptic systems generated in a bounded domain by the expressions ${l_1}\vec u = - \Delta \vec u + A\vec u,{l_2}\vec w = - \Delta \vec w + B\vec w$, and Dirichlet boundary conditions. Here $\Delta$ denotes the Laplace operator, and $A,B$ are $m \times m$ matrices. We do not assume that $A,B$ are symmetric, but instead essentially require $B$ irreducible and ${b_{ij}} \leqslant 0{\text { if }}i \ne j$. Estimates on the real eigenvalue of ${l_2}$, with a positive eigenvector are then obtained as applications. Our results are motivated by recent theorems for ordinary differential equations established by Ahmad, Lazer and Dannan.References
- Shair Ahmad and A. C. Lazer, An $N$-dimensional extension of the Sturm separation and comparison theory to a class of nonselfadjoint systems, SIAM J. Math. Anal. 9 (1978), no. 6, 1137–1150. MR 512517, DOI 10.1137/0509092
- Shair Ahmad and Alan C. Lazer, A new generalization of the Sturm comparison theorem to selfadjoint systems, Proc. Amer. Math. Soc. 68 (1978), no. 2, 185–188. MR 470327, DOI 10.1090/S0002-9939-1978-0470327-4
- W. Allegretto, A comparison theorem for nonlinear operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 25 (1971), 41–46. MR 298181
- W. Allegretto, Positive solutions and spectral properties of second order elliptic operators, Pacific J. Math. 92 (1981), no. 1, 15–25. MR 618041
- Fozi M. Dannan, Sturmian theory and disconjugacy of second order systems, Proc. Amer. Math. Soc. 90 (1984), no. 4, 563–566. MR 733406, DOI 10.1090/S0002-9939-1984-0733406-2
- Avner Friedman, Partial differential equations, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1969. MR 0445088
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften, Vol. 224, Springer-Verlag, Berlin-New York, 1977. MR 0473443
- M. A. Krasnosel′skiĭ, Positive solutions of operator equations, P. Noordhoff Ltd., Groningen, 1964. Translated from the Russian by Richard E. Flaherty; edited by Leo F. Boron. MR 0181881 K. Kreith, Oscillation theory, Lecture Notes in Math., vol. 324, Springer-Verlag, 1973.
- Olga A. Ladyzhenskaya and Nina N. Ural’tseva, Linear and quasilinear elliptic equations, Academic Press, New York-London, 1968. Translated from the Russian by Scripta Technica, Inc; Translation editor: Leon Ehrenpreis. MR 0244627
- M. H. Protter, The generalized spectrum of second-order elliptic systems, Rocky Mountain J. Math. 9 (1979), no. 3, 503–518. MR 528748, DOI 10.1216/RMJ-1979-9-3-503
- C. A. Swanson, Comparison and oscillation theory of linear differential equations, Mathematics in Science and Engineering, Vol. 48, Academic Press, New York-London, 1968. MR 0463570
- Charles A. Swanson, Picone’s identity, Rend. Mat. (6) 8 (1975), no. 2, 373–397 (English, with Italian summary). MR 402188
- C. A. Swanson, A dichotomy of PDE Sturmian theory, SIAM Rev. 20 (1978), no. 2, 285–300. MR 466896, DOI 10.1137/1020041 R. Vyborny, Continuous dependence of eigenvalues on the domain, Lecture Ser. No. 42, Institute for Fluid Dynamics and Applied Mathematics, Univ. of Maryland, 1964.
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 94 (1985), 291-296
- MSC: Primary 35B05; Secondary 35J45
- DOI: https://doi.org/10.1090/S0002-9939-1985-0784181-8
- MathSciNet review: 784181