Regular polygon solutions of the $N$-body problem
HTML articles powered by AMS MathViewer
- by L. M. Perko and E. L. Walter
- Proc. Amer. Math. Soc. 94 (1985), 301-309
- DOI: https://doi.org/10.1090/S0002-9939-1985-0784183-1
- PDF | Request permission
Abstract:
In 1772, Lagrange showed that three masses at the vertices of an equilateral triangle, rotating about their common center of mass with an appropriate angular velocity, describe a periodic solution of the three-body problem. In this paper it is shown that for $N \geqslant 4,N$ masses at the vertices of a regular polygon, rotating about their common center of mass with an appropriate angular velocity, describe a periodic solution of the $N$-body problem if and only if the masses are equal.References
- R. Hoppe, Erweiterung der bekannten Speciallösung des Dreikörperproblems, Arch. Math. Phys. 64 (1879), 218.
J. Lagrange, Oeuvres, vol. 6, Gauthier-Villars, Paris, 1873; also in Prix de l’Académie, vol. IX, Ch. II, Panekoucke, Paris, 1777, p. 61.
- Marvin Marcus and Henryk Minc, A survey of matrix theory and matrix inequalities, Allyn and Bacon, Inc., Boston, Mass., 1964. MR 0162808
- W. D. MacMillan and Walter Bartky, Permanent configurations in the problem of four bodies, Trans. Amer. Math. Soc. 34 (1932), no. 4, 838–875. MR 1501666, DOI 10.1090/S0002-9947-1932-1501666-7
- Carl Ludwig Siegel and Jürgen K. Moser, Lectures on celestial mechanics, Die Grundlehren der mathematischen Wissenschaften, Band 187, Springer-Verlag, New York-Heidelberg, 1971. Translation by Charles I. Kalme. MR 0502448, DOI 10.1007/978-3-642-87284-6
- W. L. Williams, Permanent configurations in the problem of five bodies, Trans. Amer. Math. Soc. 44 (1938), no. 3, 563–579. MR 1501982, DOI 10.1090/S0002-9947-1938-1501982-4
- Aurel Wintner, The Analytical Foundations of Celestial Mechanics, Princeton Mathematical Series, vol. 5, Princeton University Press, Princeton, N. J., 1941. MR 0005824
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 94 (1985), 301-309
- MSC: Primary 70F10; Secondary 15A90
- DOI: https://doi.org/10.1090/S0002-9939-1985-0784183-1
- MathSciNet review: 784183