Total curvatures and minimal areas of complete surfaces
HTML articles powered by AMS MathViewer
- by Katsuhiro Shiohama
- Proc. Amer. Math. Soc. 94 (1985), 310-316
- DOI: https://doi.org/10.1090/S0002-9939-1985-0784184-3
- PDF | Request permission
Abstract:
Minimal areas for certain classes of finitely connected complete open surfaces are obtained by using a Bonnesen-style isoperimetric inequality for large balls on the surfaces. In particular, the minimal area of Riemannian planes whose Gaussian curvatures are bounded above by 1 is $4\pi$.References
- Stefan Cohn-Vossen, Kürzeste Wege und Totalkrümmung auf Flächen, Compositio Math. 2 (1935), 69–133 (German). MR 1556908
- F. Fiala, Le problème des isopérimètres sur les surfaces ouvertes à courbure positive, Comment. Math. Helv. 13 (1941), 293–346 (French). MR 6422, DOI 10.1007/BF01378068
- Michael Gromov, Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math. 56 (1982), 5–99 (1983). MR 686042
- Philip Hartman, Geodesic parallel coordinates in the large, Amer. J. Math. 86 (1964), 705–727. MR 173222, DOI 10.2307/2373154
- Alfred Huber, On subharmonic functions and differential geometry in the large, Comment. Math. Helv. 32 (1957), 13–72. MR 94452, DOI 10.1007/BF02564570
- Katsuhiro Shiohama, The role of total curvature on complete noncompact Riemannian $2$-manifolds, Illinois J. Math. 28 (1984), no. 4, 597–620. MR 761993
- Katsuhiro Shiohama, Cut locus and parallel circles of a closed curve on a Riemannian plane admitting total curvature, Comment. Math. Helv. 60 (1985), no. 1, 125–138. MR 787666, DOI 10.1007/BF02567404
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 94 (1985), 310-316
- MSC: Primary 53C20
- DOI: https://doi.org/10.1090/S0002-9939-1985-0784184-3
- MathSciNet review: 784184