Symmetric cut loci in Riemannian manifolds
HTML articles powered by AMS MathViewer
- by W. Vannini and J. H. Rubinstein
- Proc. Amer. Math. Soc. 94 (1985), 317-320
- DOI: https://doi.org/10.1090/S0002-9939-1985-0784185-5
- PDF | Request permission
Abstract:
Let $M$ be a compact Riemannian manifold with ${H_1}(M,Z) = 0$. We show that, for a point $p \in M$, the cut locus and conjugate locus of $p$ must intersect if $M$ admits a group of isometries which fixes $p$ and has principal orbits of codimension at most 2. This is a classical theorem of Myers [5] in the case when $M$ has dimension 2.References
- M. Berger, Les variétés riemanniennes homogènes normales simplement connexes à courbure strictement positive, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 15 (1961), 179–246 (French). MR 133083
- Glen E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR 0413144
- Isaac Chavel, A class of Riemannian homogeneous spaces, J. Differential Geometry 4 (1970), 13–20. MR 270295
- Jeff Cheeger and David G. Ebin, Comparison theorems in Riemannian geometry, North-Holland Mathematical Library, Vol. 9, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975. MR 0458335
- Sumner Byron Myers, Connections between differential geometry and topology. I. Simply connected surfaces, Duke Math. J. 1 (1935), no. 3, 376–391. MR 1545884, DOI 10.1215/S0012-7094-35-00126-0
- Peter Orlik, Seifert manifolds, Lecture Notes in Mathematics, Vol. 291, Springer-Verlag, Berlin-New York, 1972. MR 0426001 H. Rauch, Geodesics and curvature in differential geometry in the large, Yeshiva Univ. Press, New York, 1959.
- Takashi Sakai, Cut loci of Berger’s spheres, Hokkaido Math. J. 10 (1981), no. 1, 143–155. MR 616949, DOI 10.14492/hokmj/1381758107
- Kunio Sugahara, On the cut locus and the topology of Riemannian manifolds, J. Math. Kyoto Univ. 14 (1974), 391–411. MR 365414, DOI 10.1215/kjm/1250523244
- Alan D. Weinstein, The cut locus and conjugate locus of a riemannian manifold, Ann. of Math. (2) 87 (1968), 29–41. MR 221434, DOI 10.2307/1970592
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 94 (1985), 317-320
- MSC: Primary 53C22; Secondary 53C20
- DOI: https://doi.org/10.1090/S0002-9939-1985-0784185-5
- MathSciNet review: 784185