Minimal disks and compact hypersurfaces in Euclidean space
HTML articles powered by AMS MathViewer
- by John Douglas Moore and Thomas Schulte
- Proc. Amer. Math. Soc. 94 (1985), 321-328
- DOI: https://doi.org/10.1090/S0002-9939-1985-0784186-7
- PDF | Request permission
Abstract:
Let ${M^n}$ be a smooth connected compact hypersurface in $(n + 1)$-dimensional Euclidean space ${E^{n + 1}}$, let ${A^{n + 1}}$ be the unbounded component of ${E^{n + 1}} - {M^n}$, and let ${\kappa _1} \leqslant {\kappa _2} \leqslant \cdots \leqslant {\kappa _n}$ be the principal curvatures of ${M^n}$ with respect to the unit normal pointing into ${A^{n + 1}}$. It is proven that if ${\kappa _2} + \cdots + {\kappa _n} < 0$, then ${A^{n + 1}}$ is simply connected.References
- R. Courant, The existence of a minimal surface of least area bounded by prescribed Jordan arcs and prescribed surfaces, Proc. Nat. Acad. Sci. U.S.A. 24 (1938), 97-101.
- R. Courant and N. Davids, Minimal surfaces spanning closed manifolds, Proc. Nat. Acad. Sci. U.S.A. 26 (1940), 194–199. MR 1472, DOI 10.1073/pnas.26.3.194 R. Howard and H. Wei, On the existence and nonexistence of stable submanifolds and currents in positively curved manifolds and the topology of submanifolds in Euclidean spaces (to appear).
- Willi Jäger, Behavior of minimal surfaces with free boundaries, Comm. Pure Appl. Math. 23 (1970), 803–818. MR 266067, DOI 10.1002/cpa.3160230508
- Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol. I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1996. Reprint of the 1963 original; A Wiley-Interscience Publication. MR 1393940 H. B. Lawson, Lectures on minimal submanifolds, Vol. 1, Publish or Perish, Berkeley, Calif., 1980.
- William H. Meeks III and Shing Tung Yau, Topology of three-dimensional manifolds and the embedding problems in minimal surface theory, Ann. of Math. (2) 112 (1980), no. 3, 441–484. MR 595203, DOI 10.2307/1971088
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 94 (1985), 321-328
- MSC: Primary 53C40; Secondary 53C42
- DOI: https://doi.org/10.1090/S0002-9939-1985-0784186-7
- MathSciNet review: 784186