Determinacy with complicated strategies
HTML articles powered by AMS MathViewer
- by Alexander S. Kechris
- Proc. Amer. Math. Soc. 94 (1985), 333-336
- DOI: https://doi.org/10.1090/S0002-9939-1985-0784188-0
- PDF | Request permission
Abstract:
For any class of functions $\mathfrak {F}$ from ${\mathbf {R}}$ into ${\mathbf {R}},\operatorname {AD}(\mathfrak {F}{\text {)}}$ is the assertion that in every two person game on integers one of the two players has a winning strategy in the class $\mathfrak {F}$. It is shown, in $ZF + DC + V = L({\mathbf {R}})$, that for any $\mathfrak {F}$ of cardinality $< {2^{{\aleph _0}}}$ (i.e. any $\mathfrak {F}$ which is a surjective image of ${\mathbf {R}}$) $\operatorname {AD}(\mathfrak {F})$ implies AD (the Axiom of Determinacy).References
- Andreas Blass, Determinateness and continuity, Proc. Amer. Math. Soc. 37 (1973), 572–574. MR 485364, DOI 10.1090/S0002-9939-1973-0485364-9 H. Friedman, private communication, January 1975.
- Leo A. Harrington and Alexander S. Kechris, On the determinacy of games on ordinals, Ann. Math. Logic 20 (1981), no. 2, 109–154. MR 622782, DOI 10.1016/0003-4843(81)90001-2
- Alexander S. Kechris and W. Hugh Woodin, Equivalence of partition properties and determinacy, Proc. Nat. Acad. Sci. U.S.A. 80 (1983), no. 6, i, 1783–1786. MR 699440, DOI 10.1073/pnas.80.6.1783
- Alexander S. Kechris, Eugene M. Kleinberg, Yiannis N. Moschovakis, and W. Hugh Woodin, The axiom of determinacy, strong partition properties and nonsingular measures, Cabal Seminar 77–79 (Proc. Caltech-UCLA Logic Sem., 1977–79) Lecture Notes in Math., vol. 839, Springer, Berlin, 1981, pp. 75–99. MR 611168 K. Kunen, private communication, February 1975.
- Jan Mycielski, On the axiom of determinateness, Fund. Math. 53 (1963/64), 205–224. MR 161787, DOI 10.4064/fm-53-2-205-224
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 94 (1985), 333-336
- MSC: Primary 03E60; Secondary 03E15, 03E45, 03E55
- DOI: https://doi.org/10.1090/S0002-9939-1985-0784188-0
- MathSciNet review: 784188