Equivariant $K$-theory and representations of Hecke algebras
HTML articles powered by AMS MathViewer
- by George Lusztig
- Proc. Amer. Math. Soc. 94 (1985), 337-342
- DOI: https://doi.org/10.1090/S0002-9939-1985-0784189-2
- PDF | Request permission
Abstract:
We construct some representations of the Hecke algebra of an affine Weyl group using equivariant $K$-theory and state a conjecture on some $q$-analogs of the Springer representations.References
- Michel Demazure, Une nouvelle formule des caractères, Bull. Sci. Math. (2) 98 (1974), no. 3, 163–172. MR 430001
- G. Hochschild, The structure of Lie groups, Holden-Day, Inc., San Francisco-London-Amsterdam, 1965. MR 0207883
- George Lusztig, Some examples of square integrable representations of semisimple $p$-adic groups, Trans. Amer. Math. Soc. 277 (1983), no. 2, 623–653. MR 694380, DOI 10.1090/S0002-9947-1983-0694380-4
- Graeme Segal, Equivariant $K$-theory, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 129–151. MR 234452, DOI 10.1007/BF02684593
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 94 (1985), 337-342
- MSC: Primary 22E50; Secondary 11S37, 16A64, 18F25, 20G05
- DOI: https://doi.org/10.1090/S0002-9939-1985-0784189-2
- MathSciNet review: 784189