EQUIVARIANT K-THEORY
AND REPRESENTATIONS OF HECKE ALGEBRAS

GEORGE LUSZTIG

ABSTRACT. We construct some representations of the Hecke algebra of an affine Weyl group using equivariant K-theory and state a conjecture on some q-analogs of the Springer representations.

1. This paper contains a new construction of the principal series representations of the Hecke algebra of an affine Weyl group, in terms of the equivariant K-theory of a flag manifold. The formulas defining the simplest operators in these representations are q-analogs of operators considered earlier by Demazure [1]. The results in this paper were found during a visit to the Tata Institute of Fundamental Research, Bombay, in December 1983; I am grateful to D. N. Verma for some stimulating discussions.

2. We recall (cf. Segal [4]) that if X is a compact topological space with a continuous action of a compact topological group M', then the equivariant K-theory $K_{M'}(X)$ is defined as the Grothendieck group of the category whose objects are the M'-equivariant complex vector bundles on X and the morphisms are M'-equivariant maps with locally constant rank. Then $K_{M'}(X)$ is naturally an $R_{M'}$-module where $R_{M'} = K_{M'}(point)$ is the representation ring of M', i.e. the Grothendieck group of the category of finite dimensional continuous complex representations of M'.

3. We shall need a variant of this definition, in which M' is replaced by a complex Lie group M underlying a (not necessarily connected) reductive complex algebraic group. We assume that M acts continuously on the compact topological space X, and we wish to define $K_M(X)$.

According to Mostow (see [2, Chapter XV]), M has maximal compact subgroups, any two such are conjugate and any connected component of the normalizer in M of a maximal compact subgroup M', meets M'. We shall construct, for any two maximal compact subgroups M' and M'' of M, a canonical isomorphism $\phi_{M',M''}: K_{M'}(X) \sim K_{M''}(X)$ as follows. Choose $g \in M$ such that $gM''g^{-1} = M'$. If E is an M'-equivariant vector bundle on X, we define a new vector bundle g^*E on X as the inverse image of E under the map $X \to X$, $x \mapsto gx$. It is clear that g^*E is naturally an M''-equivariant vector bundle on X and $\phi_{M',M''}$ is defined by $E \mapsto g^*E$. To show that $\phi_{M',M''}$ is independent of the choice of g, we may assume that $M' = M''$ and that $g \in M$ normalizes M'; we must show that $g^*E \approx E$ as M'-equivariant vector bundles. Since the isomorphism class of g^*E does not change when g runs through a fixed connected component of the normalizer of M', and since M' meets each such component, we can further assume that $g \in M'$. In this

Received by the editors August 12, 1984.
1980 Mathematics Subject Classification. Primary 22E50; Secondary 18F25, 16A99.
1Supported in part by the National Science Foundation.
case, the M'-equivariant structure of E defines an isomorphism $E_x \xrightarrow{g^*} E_{gx} = (g^*E)_x$
for all $x \in X$ and hence an isomorphism $g^*E \cong E$ as desired.

The isomorphisms $\phi_{M',M''}$ have an obvious transitivity property. We may therefore define $K_M(X)$ to be $\varprojlim K_{M'}(X)$ (limit over all maximal compact subgroups M' of M, with respect to the isomorphisms $\phi_{M',M''}$). Then we have natural isomorphisms $K(X) \cong K_{M'}(X)$ for any maximal compact subgroup $M' \subset M$. It also follows that $K_M(X)$ is naturally an R_M-module where $R_M = K_M(\text{point})$ is the representation ring of M, i.e. the Grothendieck group of the category of finite dimensional complex algebraic representations of M. (Note that $R_M \cong R_{M'}$ for any maximal compact subgroup $M' \subset M$.)

4. We now consider a simple, simply connected complex algebraic group G and $X = G/B$, where B is a Borel subgroup of G. Then $M = G \times C^*$ acts on X as follows: G acts by left translation and C^* acts trivially. We have $K_M(X) = K_G(X) \otimes R_{C^*} = K_G(X) \otimes \mathbb{Z}[q,q^{-1}]$, where q is the generator of R_{C^*} corresponding to the identity representation $C^* \to C^*$.

Let T be a maximal torus in B, W the Weyl group of G with respect to T, S the set of simple reflections in W (with respect to B), P the lattice of weights $T \to C^*$, $R \subset P$ the set of roots and R^+ the set of positive roots (with respect to B).

For each $s \in S$, let P_s be the parabolic subgroup $B \cup BsB$ and let $\pi_s: X \to G/P_s$ be the natural map. There is a unique endomorphism

$$T_s: K_M(X) \to K_M(X)$$

with the following property: if E is an M-equivariant algebraic vector bundle on X, then

$$E + T_sE = \pi_s^*(\pi_s)_*(E) - \pi_s^*(\pi_s)_*(E \otimes \Omega^1_s),$$

where Ω^1_s is the line bundle on X of holomorphic differential 1-forms along the fibres of π_s, regarded as an M-equivariant bundle with the obvious action of G and with the action of C^* given by scalar multiplication on each fibre of Ω^1_s. Here $(\pi_s)_*(E)$ is the alternating sum of the higher direct images of E under π_s in the category of coherent sheaves; these higher direct images are again M-equivariant algebraic vector bundles on G/P_s, hence their alternating sum defines an element in $K_M(G/P_s)$.

For any weight $p \in P$, we define an endomorphism

$$\theta_p: K_M(X) \to K_M(X)$$

by

$$\theta_p E = E \otimes L^*_p,$$

where L_p is the line bundle on $X = G/B$ associated to the homomorphism $B \to C^*$ obtained by composing the projection $B \to T$ with $p: T \to C^*$, and L^*_p is the dual line bundle; we regard L^*_p as an M-equivariant bundle with the obvious action of G and with trivial action of C^*.

5. The group structure on the lattice of weights P will be written multiplicatively. The Weyl group W acts naturally on P ($w:p \to w(p)$) and we form the semidirect product $\tilde{W} = W \cdot P$ with P normal and $w \cdot p = w(p) \cdot w$ ($w \in W, p \in P$).
Then \tilde{W} contains the affine Weyl group as a subgroup of finite index. According to Bernstein (see [3, 4.4]) one can describe the Hecke algebra \tilde{H} corresponding to \tilde{W} as follows. It is an algebra over $\mathbb{Z}[q, q^{-1}]$ with generators T_s ($s \in S$) and θ_p ($p \in P$) subject to the following relations:

\begin{align}
(5.1) & \quad (T_s + 1)(T_s - q) = 0 \quad (s \in S), \\
(5.2) & \quad T_s T_t T_s \cdots = T_t T_s T_s \cdots \\
& \quad (s \neq t \in S; \text{ both sides have } m_{s,t} \text{ factors where } m_{s,t} = \text{order of } st \text{ in } W), \\
(5.3) & \quad \theta_p \theta_{p'} = \theta_{p p'} \quad (p, p' \in P), \\
(5.4) & \quad T_s \theta_p = \theta_p T_s \quad (s \in S, p \in P, sp = ps), \\
(5.5) & \quad T_s \theta_{s(p)} T_s = q \theta_p \quad (s \in S, p \in P, sps^{-1}p^{-1} = \alpha_s^{-1}).
\end{align}

Here $\alpha_s \in \mathbb{R}^+ \subset P$ is the simple root corresponding to s. We can now state our main result.

Theorem. The endomorphisms T_s, θ_p of $K_M(X)$ defined in §4 give rise to a left \tilde{H}-module structure on $K_M(X)$. (The action of $\mathbb{Z}[q, q^{-1}] \subset \tilde{H}$ is defined to be the same as the restriction to $R_{\mathbb{C}^*}$ of the earlier action of R_M.) This \tilde{H}-module structure commutes with the R_M-module structure on $K_M(X)$.

The proof will be given in §8.1.

6. We now fix a unipotent element $u \in G$. Let $\phi: \text{SL}_2(\mathbb{C}) \to G$ be an algebraic homomorphism such that $u = \phi(\begin{smallmatrix} 0 & 1 \\ 1 & 0 \end{smallmatrix})$ and let D be the group of diagonal matrices in $\text{SL}_2(\mathbb{C})$. We define

$$M_u = \{(g, \lambda) \in G \times \mathbb{C}^* | g^{-1}ug = u^\lambda, \ g \in Z_G(\phi(D))\}.$$

(Note that any complex power of a unipotent element is well defined.) Then M_u is a reductive algebraic subgroup of $G \times \mathbb{C}^*$; if $u = e$ then $M_u = M$ of §4. Let $X_u = \{g_1 B \in X | g_1 \lambda - 1 u_1 g_1 B \};$ it is a closed subvariety of $X = G/B$ with an action of M_u given by $(g, \lambda) \circ g_1 B \to g_1 B$. We now fix a connected component c of M_u and let $M_{u,c}$ be the inverse image under $M_u \to M_u/M_u^0$ of the cyclic group in M_u/M_u^0 generated by the image of c. The $R_{M_{u,c}}$-module $K_{M_{u,c}}(X_u)$ is defined as in §2. Restriction of vector bundles gives rise to a homomorphism of $R_{M_{u,c}}$-modules

$$(6.1) \quad R_{M_{u,c}} \otimes_{R_M} K_M(X) \to K_{M_{u,c}}(X_u).$$

(We regard $R_{M_{u,c}}$ as an R_M-module, via the homomorphism $R_M \to R_{M_{u,c}}$ induced by the inclusion $M_{u,c} \subset M$.) Now let $\bar{R}_{M_{u,c}}$ be the ring $R_{M_{u,c}}/J$, where J is the ideal of $R_{M_{u,c}}$ consisting of all $E \in R_{M_{u,c}}$ whose character is identically zero on c. Then from (6.1) we get a homomorphism of $\bar{R}_{M_{u,c}}$-modules

$$(6.2) \quad \bar{R}_{M_{u,c}} \otimes_{R_M} K_M(X) \to \bar{R}_{M_{u,c}} \otimes_{R_{M_{u,c}}} K_{M_{u,c}}(X_u).$$

We have a natural surjective homomorphism $M_{u,c} \to \mathbb{C}^*$, $(g, \lambda) \to \lambda$; it induces a ring homomorphism $R_{\mathbb{C}^*} \to R_{M_{u,c}}$ and we shall denote the image of $q \in R_{\mathbb{C}^*}$ in $\bar{R}_{M_{u,c}}$ again by q. We can now state the following conjecture.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
CONJECTURE. There exists a natural left \mathcal{H}-module structure on
\[\overline{R}_{M_u,c} \otimes_{R_{M_u,c}} K_{M_u,c}(X_u) \]
with the following properties:

(a) It is compatible under (6.2) with the \mathcal{H}-module structure on
\[\overline{R}_{M_u,c} \otimes_{R_{M_u,c}} K_{M}(X) \]
deduced by extension of scalars from the \mathcal{H}-module structure on $K_{M}(X)$ described in the Theorem.

(b) The action of θ_p ($p \in P$) on
\[\overline{R}_{M_u,c} \otimes_{R_{M_u,c}} K_{M_u,c}(X_u) \]
is by tensor product with the restriction of L_p^* to X_u (see (4.4)).

(c) It commutes with the $\overline{R}_{M_u,c}$-module structure, and $q \in \mathcal{H}$ acts in the same way as $q \in \overline{R}_{M_u,c}$.

7. Assuming the conjecture, let us consider a semisimple element $s \in G$ such that $(s,q_0) \in M_u$ for some $q_0 \in \mathbb{C}^*$. Let c be the component of M_u containing s. Let
\[\tilde{H}(q_0) = \mathbb{C} \otimes_{\mathbb{Z}[q,q^{-1}]} \tilde{H}, \]
where \mathbb{C} is regarded as a $\mathbb{Z}[q,q^{-1}]$-module with q acting as multiplication by q_0. Let $h_s: R_{M_u,c} \rightarrow \mathbb{C}$ be the ring homomorphism defined by $E \mapsto \text{Tr}(s,E)$ ($E \in R_{M_u,c}$). This homomorphism factors through $\overline{R}_{M_u,c}$, since $s \in c$. Consider the tensor product
\[F_{u,s} = \mathbb{C} \otimes_{R_{M_u,c}} K_{M_u,c}(X_u), \]
where \mathbb{C} is regarded as a $R_{M_u,c}$-module via h_s. Note that $F_{u,s}$ is a finite dimensional \mathbb{C}-vector space. (Indeed by a theorem of Segal [4], $K_{M_u,c}(X_u)$ is a finitely generated $R_{M_u,c}$-module.) The conjecture implies that there is a natural left $\tilde{H}(q_0)$-module structure on $F_{u,s}$. It is a q-analog of the W-representations of Springer, which were extended to \tilde{W} by S. Kato (Nederl. Akad. Wetensch. Proc. Ser. A 86 (1983), 193–201).

8. Proof of the theorem. It is well known that the elements $L_p \in K_G(X)$ ($p \in P$) form a \mathbb{Z}-basis of $K_G(X)$. Thus $K_G(X)$ may be identified with the group ring $\mathbb{Z}[P]$. It is also known that under this identification the canonical ring homomorphism $R_G \rightarrow K_G(X)$ becomes the inclusion of the W-invariants $\mathbb{Z}[P]^W$ into $\mathbb{Z}[P]$. It follows that we may identify $K_{M}(X)$ with $\mathcal{R}_0 = \text{group ring of } P$ over $\mathbb{Z}[q,q^{-1}]$ and the canonical ring homomorphism $R_M \rightarrow K_{M}(X)$ with the inclusion $\mathcal{R}_0^W \rightarrow \mathcal{R}_0$. We shall denote by \mathcal{R} the quotient field of \mathcal{R}_0. With these identifications, the map $T_s: K_{M}(X) \rightarrow K_{M}(X)$ becomes the $\mathbb{Z}[q,q^{-1}]$-linear map $T_s: \mathcal{R}_0 \rightarrow \mathcal{R}_0$ given by
\[T_s(\lambda) = \frac{\lambda - s(\lambda)}{\alpha_s - 1} - q \frac{\lambda - s(\lambda)\alpha_s}{\alpha_s - 1} \quad (\lambda \in P). \]
Note that this is a priori an element of \mathcal{R}. But it is easily seen that it is actually in \mathcal{R}_0. (If we specialize q to 1 this is just the action $\lambda \mapsto s(\lambda)$ of W on P. If we
specialize \(q \) to 0 we obtain essentially Demazure's operator \([1]\). Thus our operator
(8.1) is the simplest possible interpolation between these two special cases.)

The map \(\theta_p: K_M(X) \to K_M(X) \) becomes with the previous identifications the
\(\mathbb{Z}[q, q^{-1}] \)-linear map \(\theta_p: \mathcal{R}_0 \to \mathcal{R}_0 \) defined by

\[
\theta_p(\lambda) = \lambda p^{-1}.
\]

We must show that the endomorphisms (8.1), (8.2) of \(\mathcal{R}_0 \) verify the identities (5.1)–
(5.5).

The identities (5.1), (5.3) and (5.4) are immediate. Now let \(s \neq t \) be two simple
reflections in \(S \) and let \(\langle s, t \rangle \) be the subgroup of \(W \) they generate. Let \(\Phi_{s,t} \) be the
set of roots which are \(\mathbb{Z} \)-combinations of the simple roots \(\alpha_s, \alpha_t \) and let \(\Phi_{s,t}^+ \cup \Phi_{s,t}^- \)
be its partition into positive and negative roots. Let \(\rho_{s,t} \) be the element of \(P \) such that

\[
\rho_{s,t} = \prod_{\alpha \in \Phi_{s,t}^+} \alpha.
\]

Let

\[
\Psi^+ = \prod_{\alpha \in \Phi_{s,t}^+} (1 - q\alpha), \quad \Psi^- = \prod_{\alpha \in \Phi_{s,t}^-} (1 - q\alpha).
\]

For any element \(\xi \in \mathcal{R}_0 \) we define \(\text{Alt}_{s,t}(\xi) = \sum_{w \in \langle s, t \rangle} (-1)^l(w) w(\xi) \), where \(l \) is the
length function on \(W \).

We denote the product \(T_s T_t T_s \cdots \) by \(T_{s,i} \) and similarly we denote
the product \(T_t T_s T_t \cdots \) by \(T_{t,i} \). With these notations we state the following
identity which is verified by direct computation. (Here \(m = \text{order of } st \) in \(W \).)

\[
1 + \sum_{1 \leq i \leq m} T_{s,i} + \sum_{1 \leq i \leq m-1} T_{t,i}
\]

\[
= \text{Alt}_{s,t}(\lambda \rho_{s,t} \Psi^-) \cdot (\text{Alt}_{s,t}(\rho_{s,t}))^{-1} \quad (\lambda \in P).
\]

The right-hand side of this identity is symmetric in \(s, t \). Hence so is the left-hand
side. It follows that \(T_{s,m} = T_{t,m} \) and (5.2) follows. (Alternatively, one can use the
following identity:

\[
\left((-q)^m + \sum_{1 \leq i \leq m} (-q)^{m-i} T_{s,i} + \sum_{1 \leq i \leq m-1} (-q)^{m-i} T_{t,i} \right) (\lambda)
\]

\[
= \rho_{s,t}^{-1} \Psi^+ \text{Alt}_{s,t}(\lambda) \cdot (\text{Alt}_{s,t}(\rho_{s,t}))^{-1} \quad (\lambda \in P.).
\]

With the assumption of (5.5) we have for \(\lambda \in P \):

\[
T_s \theta_{s(p)} T_s(\lambda) = T_s \frac{\lambda - s(\lambda) - q(\lambda - s(\lambda)\alpha_s)}{(\alpha_s - 1)s(p)}
\]

\[
= \frac{1}{\alpha_s - 1} \left(\frac{\lambda - s(\lambda) - q(\lambda - s(\lambda)\alpha_s)}{(\alpha_s - 1)p\alpha_s^{-1}} \right) (1 - q)
\]

\[
- \frac{s(\lambda) - \lambda - q(s(\lambda) - \lambda\alpha_s^{-1})}{(\alpha_s^{-1} - 1)p} (1 - q\alpha_s)
\]

\[
= q\lambda p^{-1} = q\theta_p(\lambda).
\]
We now show that the operators $T_s, \theta_p: \mathcal{R}_0 \to \mathcal{R}_0$ are \mathcal{R}_0^W-linear. This is trivial for θ_p. For T_s, we have the following multiplicative property (whose proof is trivial):

$$T_s(f \cdot g) = (T_s f) \cdot g + s(f) \cdot T_s(g) - q s(f) \cdot g$$

for any $f, g \in \mathcal{R}_0$. If $f = s(f)$, then clearly $T_s f = q f$ so that $T_s(f \cdot g) = f \cdot T_s(g)$. In particular, if $f \in \mathcal{R}_0^W$, then $T_s(f \cdot g) = f \cdot T_s(g)$ for all $g \in \mathcal{R}_0$ and all $s \in S$. This shows that T_s is \mathcal{R}_0^W-linear.

9. Remarks. (a) By a theorem of Pittie, \mathcal{R}_0 is a free \mathcal{R}_0^W-module of rank $|W|$.

(b) The formula (8.3) has the following interpretation. Let $P_{s,t}$ be the parabolic subgroup $\bigcup_{w \in (s,t)} BwB$ and let $\pi_{s,t}$ be the natural map $G/B \to G/P_{s,t}$. Let us define T_w for $w \in W$ as $T_{s_1} T_{s_2} \cdots T_{s_r}$, where $s_1 s_2 \cdots s_r$ is a reduced expression for W. Then for any M-equivariant algebraic vector bundle E on $X = G/B$, we have

$$\sum_{w \in (s,t)} T_w E = \sum_{i} (-1)^i \pi_{s,t}^{\ast} (\pi_{s,t})_{\ast} (E \otimes \Omega_{s,t}^{i})$$

where $\Omega_{s,t}^{i}$ is the vector bundle on X of holomorphic differential i-forms along the fibres of $\pi_{s,t}$ regarded as an M-equivariant bundle with the obvious action of G and with the action of C^* given by scalar multiplication by z^i on each fibre. (Compare (4.2).)

REFERENCES

DEPARTMENT OF MATHEMATICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS 02139