Remarks on the homotopy type of groups of symplectic diffeomorphisms
HTML articles powered by AMS MathViewer
- by Dusa McDuff
- Proc. Amer. Math. Soc. 94 (1985), 348-352
- DOI: https://doi.org/10.1090/S0002-9939-1985-0784191-0
- PDF | Request permission
Abstract:
Let $(X,\omega )$ be a symplectic manifold without boundary, $G(X)$ the identity component of its group of compactly supported diffeomorphisms, and ${H_\omega }(X)$ the subgroup of $G(X)$ consisting of all symplectic diffeomorphisms. In this note, we give examples in which ${H_\omega }(X)$ is not homotopy equivalent to $G(X)$.References
- Augustin Banyaga, Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique, Comment. Math. Helv. 53 (1978), no. 2, 174–227 (French). MR 490874, DOI 10.1007/BF02566074
- Dusa McDuff, Symplectic diffeomorphisms and the flux homomorphism, Invent. Math. 77 (1984), no. 2, 353–366. MR 752824, DOI 10.1007/BF01388450
- Jürgen Moser, On the volume elements on a manifold, Trans. Amer. Math. Soc. 120 (1965), 286–294. MR 182927, DOI 10.1090/S0002-9947-1965-0182927-5
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 94 (1985), 348-352
- MSC: Primary 58D05; Secondary 53C15, 57R50
- DOI: https://doi.org/10.1090/S0002-9939-1985-0784191-0
- MathSciNet review: 784191