A note on infinite-dimensional spaces defined by topological games
HTML articles powered by AMS MathViewer
- by Yasunao Hattori
- Proc. Amer. Math. Soc. 94 (1985), 360-363
- DOI: https://doi.org/10.1090/S0002-9939-1985-0784193-4
- PDF | Request permission
Abstract:
We get the following result: For a totally normal space $X,X$ is a strongly countable dimensional space if and only if $X$ is an ${\mathbf {F}}({\mathbf {dim}})$-like space. This result answers a question of R. Telgársky.References
- Ryszard Engelking and Elżbieta Pol, Countable-dimensional spaces: a survey, Dissertationes Math. (Rozprawy Mat.) 216 (1983), 41. MR 722011
- Kenneth Kunen, Luzin spaces, Topology Proceedings, Vol. I (Conf., Auburn Univ., Auburn, Ala., 1976) Math. Dept., Auburn Univ., Auburn, Ala., 1977, pp. 191–199. MR 0450063
- Kiiti Morita, Products of normal spaces with metric spaces, Math. Ann. 154 (1964), 365–382. MR 165491, DOI 10.1007/BF01362570
- A. R. Pears, Dimension theory of general spaces, Cambridge University Press, Cambridge, England-New York-Melbourne, 1975. MR 0394604
- Rastislav Telgársky, Spaces defined by topological games, Fund. Math. 88 (1975), no. 3, 193–223. MR 380708, DOI 10.4064/fm-88-3-193-223
- Yukinobu Yajima, Topological games and products. III, Fund. Math. 117 (1983), no. 3, 223–238. MR 719842, DOI 10.4064/fm-117-3-223-238
- Yukinobu Yajima, Notes on topological games, Fund. Math. 121 (1984), no. 1, 31–40. MR 761966, DOI 10.4064/fm-121-1-31-40
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 94 (1985), 360-363
- MSC: Primary 54F45; Secondary 54D15, 54D20, 90D42
- DOI: https://doi.org/10.1090/S0002-9939-1985-0784193-4
- MathSciNet review: 784193