Short normal paths and spectral variation
HTML articles powered by AMS MathViewer
- by Rajendra Bhatia and John A. R. Holbrook
- Proc. Amer. Math. Soc. 94 (1985), 377-382
- DOI: https://doi.org/10.1090/S0002-9939-1985-0787876-5
- PDF | Request permission
Abstract:
We introduce the notion of a "short normal path" between matrices $S$ and $T$, that is, a continuous path from $S$ to $T$ consisting of normal matrices and having the same length as the straight line path from $S$ to $T$. By this means we prove that for certain normal matrices $S$ and $T$ the eigenvalues of $S$ and $T$ may be paired in such a way that the maximum distance (in the complex plane) between the pairs is no more than the operator norm $\left \| {S - T} \right \|$. In particular, we generalize and provide a new approach to a recent result of Bhatia and Davis treating the case of unitary $S$ and $T$.References
- Rajendra Bhatia, Analysis of spectral variation and some inequalities, Trans. Amer. Math. Soc. 272 (1982), no. 1, 323–331. MR 656492, DOI 10.1090/S0002-9947-1982-0656492-X
- Rajendra Bhatia and Chandler Davis, A bound for the spectral variation of a unitary operator, Linear and Multilinear Algebra 15 (1984), no. 1, 71–76. MR 731677, DOI 10.1080/03081088408817578 T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin and New York, 1980.
- L. Mirsky, Symmetric gauge functions and unitarily invariant norms, Quart. J. Math. Oxford Ser. (2) 11 (1960), 50–59. MR 114821, DOI 10.1093/qmath/11.1.50
- V. S. Sunder, Distance between normal operators, Proc. Amer. Math. Soc. 84 (1982), no. 4, 483–484. MR 643734, DOI 10.1090/S0002-9939-1982-0643734-5
- Hermann Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung), Math. Ann. 71 (1912), no. 4, 441–479 (German). MR 1511670, DOI 10.1007/BF01456804
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 94 (1985), 377-382
- MSC: Primary 15A42
- DOI: https://doi.org/10.1090/S0002-9939-1985-0787876-5
- MathSciNet review: 787876