On an $L_ 1$-approximation problem
HTML articles powered by AMS MathViewer
- by András Kroó
- Proc. Amer. Math. Soc. 94 (1985), 406-410
- DOI: https://doi.org/10.1090/S0002-9939-1985-0787882-0
- PDF | Request permission
Abstract:
Let ${C_w}[a,b]$ denote the space of real continuous functions with norm ${\left \| f \right \|_w} = \smallint _a^b\left | {f(x)} \right |w(x)dx$, where $w$ is a positive bounded weight. It is known that if a subspace ${M_n} \subset {C_w}[a,b]$ satisfies a certain $A$-property, then ${M_n}$ is a Chebyshev subspace of ${C_w}[a,b]$ for all $w$. We prove that the $A$-property is also necessary for ${M_n}$ to be Chebyshev in ${C_w}[a,b]$ for each $w$.References
- P. V. Galkin, The uniqueness of the element of best mean approximation of a continuous function by splines with fixed nodes, Mat. Zametki 15 (1974), 3–14 (Russian). MR 338623
- S. Ja. Havinson, On uniqueness of functions of best approximation in the metric of the space $L_{1}$, Izv. Akad. Nauk SSSR Ser. Mat. 22 (1958), 243–270 (Russian). MR 0101443
- A. Kroó, Some theorems on best $L_1$-approximation of continuous functions, Acta Math. Hungar. 44 (1984), no. 3-4, 409–417. MR 764637, DOI 10.1007/BF01950298
- Manfred Sommer, $L_{1}$-approximation by weak Chebyshev spaces, Approximation in Theorie und Praxis (Proc. Sympos., Siegen, 1979) Bibliographisches Inst., Mannheim, 1979, pp. 85–102. MR 567655
- Manfred Sommer, Weak Chebyshev spaces and best $L_{1}$-approximation, J. Approx. Theory 39 (1983), no. 1, 54–71. MR 713361, DOI 10.1016/0021-9045(83)90068-0 H. Strauss, Best ${L_1}$-approximation, Bericht 035 des Institut für Angewandte Mathematik I der Universitat Erlangen-Nürnberg, 1977. —, ${L_1}$-approximation mit splinefunktionen, Numerische Methoden der Approximationstheorie, Band 2 (L. Collatz, G. Meinardus, eds.), Internat. Schriftenreihe Numer. Math., Bd 26, Birkhäuser, Basel, 1975, 151-162.
- Hans Strauß, Eindeutigkeit in der $L_{1}$-Approximation, Math. Z. 176 (1981), no. 1, 63–74 (German). MR 606172, DOI 10.1007/BF01258905
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 94 (1985), 406-410
- MSC: Primary 41A50; Secondary 41A52
- DOI: https://doi.org/10.1090/S0002-9939-1985-0787882-0
- MathSciNet review: 787882