On Lipschitz functions of normal operators
Author:
Fuad Kittaneh
Journal:
Proc. Amer. Math. Soc. 94 (1985), 416-418
MSC:
Primary 47B15; Secondary 47A60
DOI:
https://doi.org/10.1090/S0002-9939-1985-0787884-4
MathSciNet review:
787884
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: It is shown that if and
are normal operators on a separable, complex Hilbert space
, and
is a Lipschitz function on
(i.e.,
for some positive constant
and all
, then
for any operator
on
. In particular,
.
- [1] W. O. Amrein and D. B. Pearson, Commutators of Hilbert-Schmidt type and the scattering cross section, Ann. Inst. H. Poincaré Sect. A (N.S.) 30 (1979), no. 2, 89–107. MR 535367
- [2] Huzihiro Araki and Shigeru Yamagami, An inequality for Hilbert-Schmidt norm, Comm. Math. Phys. 81 (1981), no. 1, 89–96. MR 630332
- [3] M. S. Birman and M. Z. Solomyak, Stieltjes double-integral, Topics in Mathematical Physics, Vol. 1, Consultants Bureau, New York, 1967.
- [4] Yu. B. Farforovskaya, Example of a Lipschitz function of self-adjoint operators that gives a nonnuclear increment under a nuclear perturbation, J. Soviet Math. 4 (1975), 426-433.
- [5]
-, An estimate of the difference
in the class
, J. Soviet Math. 8 (1977), 146-148.
- [6]
-, An estimate of the norm
for self-adjoint operators A and B, J. Soviet Math. 14 (1980), 1133-1149.
- [7] I. C. Gohberg and M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Translated from the Russian by A. Feinstein. Translations of Mathematical Monographs, Vol. 18, American Mathematical Society, Providence, R.I., 1969. MR 0246142
- [8]
F. Kittaneh, Commutators of
type, Ph. D. Thesis, Indiana Univ., 1982.
- [9] Robert Schatten, Norm ideals of completely continuous operators, Ergebnisse der Mathematik und ihrer Grenzgebiete. N. F., Heft 27, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1960. MR 0119112
- [10] Dan Voiculescu, Some results on norm-ideal perturbations of Hilbert space operators, J. Operator Theory 2 (1979), no. 1, 3–37. MR 553861
- [11] Gary Weiss, The Fuglede commutativity theorem modulo the Hilbert-Schmidt class and generating functions for matrix operators. II, J. Operator Theory 5 (1981), no. 1, 3–16. MR 613042
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47B15, 47A60
Retrieve articles in all journals with MSC: 47B15, 47A60
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1985-0787884-4
Keywords:
Lipschitz function,
Hilbert-Schmidt operator,
normal operator
Article copyright:
© Copyright 1985
American Mathematical Society