On Lipschitz functions of normal operators

Author:
Fuad Kittaneh

Journal:
Proc. Amer. Math. Soc. **94** (1985), 416-418

MSC:
Primary 47B15; Secondary 47A60

DOI:
https://doi.org/10.1090/S0002-9939-1985-0787884-4

MathSciNet review:
787884

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that if and are normal operators on a separable, complex Hilbert space , and is a Lipschitz function on (i.e., for some positive constant and all , then for any operator on . In particular, .

**[1]**W. O. Amrein and D. B. Pearson,*Commutators of Hilbert-Schmidt type and the scattering cross section*, Ann. Inst. H. Poincaré Sect. A (N.S.)**30**(1979), no. 2, 89–107. MR**535367****[2]**Huzihiro Araki and Shigeru Yamagami,*An inequality for Hilbert-Schmidt norm*, Comm. Math. Phys.**81**(1981), no. 1, 89–96. MR**630332****[3]**M. S. Birman and M. Z. Solomyak,*Stieltjes double-integral*, Topics in Mathematical Physics, Vol. 1, Consultants Bureau, New York, 1967.**[4]**Yu. B. Farforovskaya,*Example of a Lipschitz function of self-adjoint operators that gives a nonnuclear increment under a nuclear perturbation*, J. Soviet Math.**4**(1975), 426-433.**[5]**-,*An estimate of the difference**in the class*, J. Soviet Math.**8**(1977), 146-148.**[6]**-,*An estimate of the norm**for self-adjoint operators A and B*, J. Soviet Math.**14**(1980), 1133-1149.**[7]**I. C. Gohberg and M. G. Kreĭn,*Introduction to the theory of linear nonselfadjoint operators*, Translated from the Russian by A. Feinstein. Translations of Mathematical Monographs, Vol. 18, American Mathematical Society, Providence, R.I., 1969. MR**0246142****[8]**F. Kittaneh,*Commutators of**type*, Ph. D. Thesis, Indiana Univ., 1982.**[9]**Robert Schatten,*Norm ideals of completely continuous operators*, Ergebnisse der Mathematik und ihrer Grenzgebiete. N. F., Heft 27, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1960. MR**0119112****[10]**Dan Voiculescu,*Some results on norm-ideal perturbations of Hilbert space operators*, J. Operator Theory**2**(1979), no. 1, 3–37. MR**553861****[11]**Gary Weiss,*The Fuglede commutativity theorem modulo the Hilbert-Schmidt class and generating functions for matrix operators. II*, J. Operator Theory**5**(1981), no. 1, 3–16. MR**613042**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
47B15,
47A60

Retrieve articles in all journals with MSC: 47B15, 47A60

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1985-0787884-4

Keywords:
Lipschitz function,
Hilbert-Schmidt operator,
normal operator

Article copyright:
© Copyright 1985
American Mathematical Society