On Lipschitz functions of normal operators
HTML articles powered by AMS MathViewer
- by Fuad Kittaneh
- Proc. Amer. Math. Soc. 94 (1985), 416-418
- DOI: https://doi.org/10.1090/S0002-9939-1985-0787884-4
- PDF | Request permission
Abstract:
It is shown that if $N$ and $M$ are normal operators on a separable, complex Hilbert space $H$, and $f$ is a Lipschitz function on $\Omega = \sigma (N) \cup \sigma (M)$ (i.e., $\left | {f(z) - f(w)} \right | \leqslant k\left | {z - w} \right |$ for some positive constant $k$ and all $z,w \in \Omega )$, then ${\left \| {f(N)X - Xf(M)} \right \|_2} \leqslant k{\left \| {NX - XM} \right \|_2}$ for any operator $X$ on $H$. In particular, ${\left \| {f(N) - f(M)} \right \|_2} \leqslant k{\left \| {N - M} \right \|_2}$.References
- W. O. Amrein and D. B. Pearson, Commutators of Hilbert-Schmidt type and the scattering cross section, Ann. Inst. H. Poincaré Sect. A (N.S.) 30 (1979), no. 2, 89–107. MR 535367
- Huzihiro Araki and Shigeru Yamagami, An inequality for Hilbert-Schmidt norm, Comm. Math. Phys. 81 (1981), no. 1, 89–96. MR 630332 M. S. Birman and M. Z. Solomyak, Stieltjes double-integral, Topics in Mathematical Physics, Vol. 1, Consultants Bureau, New York, 1967. Yu. B. Farforovskaya, Example of a Lipschitz function of self-adjoint operators that gives a nonnuclear increment under a nuclear perturbation, J. Soviet Math. 4 (1975), 426-433. —, An estimate of the difference $f(B) - f(A)$ in the class ${\gamma _p}$, J. Soviet Math. 8 (1977), 146-148. —, An estimate of the norm $\left \| {f(B) - f(A)} \right \|$ for self-adjoint operators A and B, J. Soviet Math. 14 (1980), 1133-1149.
- I. C. Gohberg and M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Translations of Mathematical Monographs, Vol. 18, American Mathematical Society, Providence, R.I., 1969. Translated from the Russian by A. Feinstein. MR 0246142 F. Kittaneh, Commutators of ${C_p}$ type, Ph. D. Thesis, Indiana Univ., 1982.
- Robert Schatten, Norm ideals of completely continuous operators, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Heft 27, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1960. MR 0119112
- Dan Voiculescu, Some results on norm-ideal perturbations of Hilbert space operators, J. Operator Theory 2 (1979), no. 1, 3–37. MR 553861
- Gary Weiss, The Fuglede commutativity theorem modulo the Hilbert-Schmidt class and generating functions for matrix operators. II, J. Operator Theory 5 (1981), no. 1, 3–16. MR 613042
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 94 (1985), 416-418
- MSC: Primary 47B15; Secondary 47A60
- DOI: https://doi.org/10.1090/S0002-9939-1985-0787884-4
- MathSciNet review: 787884