ALMOST EUCLIDEAN QUOTIENT SPACES OF SUBSPACES
OF A FINITE-DIMENSIONAL NORMED SPACE

V. D. MILMAN

ABSTRACT. The main result of this article is Theorem 1 which states that a quotient
space Y, dim Y = k, of a subspace of any finite dimensional normed space X,
dim X = n, may be chosen to be d-isomorphic to a euclidean space even for
k = \lfloor \lambda n \rfloor \; \text{for any fixed} \; \lambda < 1 \; \text{and} \; d \text{depending on} \; \lambda \; \text{only.}

The following theorem is proved.

1. Theorem. For every d > 1 there exists \(\lambda(d) > 0 \) such that every n-dimensional
normed space X contains a k-dimensional quotient space F of a subspace E \subset X which satisfies

(i) \(d(F, l_2^k) < d, \)

(ii) \(\dim F = k \geq \lambda(d)n. \)

(Here \(d(F, l_2^k) \) denotes a Banach-Mazur distance between two normed spaces; i.e.,
\[
d(X, Y) = \inf\{ \|T\| \cdot \|T^{-1}\| \text{ over all linear isomorphisms } T: X \to Y \}.\]

Moreover, \(\lambda(d) \to 1 \text{ if } d \to \infty \) and, for large \(d, \lambda(d) = 1 - 3\sqrt{6}/\ln \ln d. \)

Remark 1. It is enough to prove Theorem 1 for large \(d \) only, because, as proved in
[M1], any d-isomorphic copy of \(l_2^k \) contains, for any \(\epsilon > 0 \), a \((1 + \epsilon)\)-isomorphic copy of \(l_2^k \), where \(k \geq \kappa(\epsilon)m/d^2 \) and \(\kappa(\epsilon) > 0 \) depends on \(\epsilon > 0 \) only.

Remark 2. Of course, the theorem states that the dual \(E^* \subset E \subset X \) contains a
subspace \(F^* \subset E^* \) which satisfies (i) and (ii) of the theorem.

Remark 3. In [M2] the theorem was proved with a logarithmic factor, and this
theorem was formulated as a problem. We refer the reader to this paper for relevant
discussion.

2. Notations. Let \(X \) be an n-dimensional normed space, i.e., \(R^n \) with the norm \(\| \cdot \| \),
and let \((x, y) \) be an inner product on \(X \); consequently, \(|x| = (x, x)^{1/2} \) is a euclidean
norm on \(X \). For any \(x \in X \) let \((1/a)|x| \leq \|x\| \leq b|x|\) and \(M_r = \int_{x \in S^{n-1}} \|x\| d\mu(x), \)
where \(S^{n-1} = \{ x \in X : |x| = 1 \} \) and \(\mu(x) = \mu_{n-1}(x) \) is the normalized invariant
(Haar) measure on \(S^{n-1} \). Let \(\|x\||^* = \sup_{y \neq 0}(|(x, y)|/\|y\|) \). Then \((1/b)|x| \leq \|x\||^* \leq \a|x|, \) and we define \(M_r^* = \int_{S^{n-1}} \|x\||^* d\mu(x). \)

Received by the editors July 1, 1984 and, in revised form, August 25, 1984.
1980 Mathematics Subject Classification. Primary 46B20, 46B25, 46C99.
Key words and phrases. Finite-dimensional spaces, euclidean spaces.
Let \(K = \{ x \in X: \|x\| \leq 1 \} \), \(K^* = \{ x \in X: \|x\|^* \leq 1 \} \), and \(D = \{ x \in X: |x| \leq 1 \} \). We consider also the usual \((n\text{-dimensional})\) Lebesgue measure \((\text{Vol}_n)\) on \(R^n \) normalized (for example) so that the induced measure on \(S^{n-1} \) coincides with \(\mu(x) \); that is,
\[
\text{Vol}_n(D) = (1/n)\mu(S^{n-1}) = 1/n.
\]

We will use the following geometrical inequalities:

1. \((\text{Vol}_n K / \text{Vol}_n D)^{1/n} \leq M_r^* \) (the Urysohn inequality \([U]\)),
2. \(\text{Vol}_n K \cdot \text{Vol}_n K^* \leq (\text{Vol}_n D)^2 \) (the Santalo inequality \([S]\)).

Also define \(M_r \cdot M_r^* = M \).

3. We prove the following proposition (see also \([M_2]\)).

Proposition. For every \(\lambda, 0 < \lambda < 1 \), there exists a subspace \(E \subset X, \dim E \geq \lambda n \), such that \(E^* \) contains a subspace \(F \subset E^* \), \(\dim F = k \geq \lambda^2 n \), such that
\[
d(F, l_2^k) \leq [C_1(M + 1)]^{2A(1-\lambda)^2},
\]
where \(C_1 \) is an absolute constant (say \(\sim 8\pi \)).

Proof. We start with a general argument valid for an arbitrary Euclidean norm \(| \cdot | \) on \(R^n \). This norm will be defined in §§5 and 6. We introduce an additional norm \(\| \cdot \| \) on \(X \) such that
\[
K_1 = \{ x \in X: \|x\|_1 \leq 1 \} = \text{Conv}(K \cup D).
\]
Then \(K_1^* = \{ x \in X: \|x\|^*_1 \leq 1 \} = K^* \cap D \) (i.e., \(\|x\|^*_1 = \max(\|x\|^*, |x|) \)). Therefore,
\[
M_r \cdot M_r^* = \int_{S^{n-1}} \|x\|_1 d\mu(x) \leq M_r^* + 1.
\]
Since \(\|x\|_1 \leq |x| \), the so-called volume ratio of the pair \((K_1; D)\) is
\[
\nu(K_1) \overset{\text{def}}{=} (\text{Vol}_n K_1 / \text{Vol}_n D)^{1/n} \leq M_r^* + 1 \overset{\text{def}}{=} A
\]
(by (1)). Next we use the following statement, which is an immediate consequence of the technique of Szarek’s proof \([Sz]\) of Kashin’s theorem \([K]\) (for details see \([M_2]\)).

4. Statement. Let \(\nu(K_1) \leq A \). Fix \(0 < \lambda < 1 \). Then for any \(k \leq \lambda n \) there exists a subspace \(E \), \(\dim E = k \), such that
\[
\frac{1}{2}(2\pi A)^{-\theta} |x| \leq \|x\|_1 \leq \|x\|,
\]
where \(\theta = 1/(1-\lambda) \). The normalized Haar measure \(\nu_{n,k} \) of such subspaces in the Grassmann manifold \(G_{n,k} \) of \(k\)-dimensional subspaces of \(R^n \) is at least \(1 - 1/2^{n-1} \).

5. We return to the proof of Proposition 3 and consider the normalization \(M_r = 1 \).
Let \(a = \{ x \in S: \|x\| \leq 2 \} \). Then obviously \(\mu(a) \geq 1/2 \). Fix \(\delta > 0 \). Let \(B = \{ \xi \in G_{n,k}: \mu_\xi(a \cap \xi) \geq \delta \} \). Again, obviously, \(\nu_{n,k}(B) = \gamma \geq (\frac{1}{2} - \delta)/(1 - \delta) \). Then for any \(\xi \in B \),
\[
\frac{\text{Vol}_\xi(K \cap \xi)}{\text{Vol}_\xi(D \cap \xi)} = \int_{S \cap \xi} \frac{1}{\|x\|^k} d\mu(x) \geq \frac{1}{2^k} \delta.
\]
Choose \(\delta = 1/4 \) and so \(\gamma \geq 1/3 \).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Therefore, there exists a subspace E_0 (and actually a large measure of subspaces) as in Statement 4 such that

\[\text{Vol}_k(K \cap E_0)/\text{Vol}_k(D(E_0)) \geq 1/2^k \cdot 1/4, \]

where $k = \dim E_0$. Consider now E_0^*. Then for any $x \in E_0^*$, $\|x\|^* \leq (2\pi A)^\theta |x|$, and by (3) and the Santalo inequality (2),

\[\text{Vol}_k(K \cap E_0)^*/\text{Vol}_k(D(E_0)) \leq 4 \cdot 2^k. \]

Therefore, introducing a new norm on E_0: $\|x\|_2 = \|x\|^*/(2\pi A)^\theta$, we have that $K_2 = \{ x : \|x\|_2 \leq 1 \}$ has the volume ratio

\[\text{vr}(K_2) \leq A_1 = 4(2\pi A)^\theta \cdot 4^{1/k} \quad (\text{and } \|x\|_2 \leq |x|). \]

So we may use Statement 4 one more time for the norm $\| \cdot \|_2$ to finish the proof of Proposition 3.

6. Proposition 3 contains a number M which depends on the choice of a euclidean norm in R^n. It is known [F, T.] that for every $(X, \| \cdot \|)$ there exists a euclidean norm $| \cdot |$ such that $M + 1 \leq c_2||\text{Rad}_X||$, where c_2 is an absolute constant and $||\text{Rad}_X||$ is the norm of the so-called Rademacher projection of $L_2(X)$ onto Rad X, which, as G. Pisier [P] has proved, may be estimated by

\[||\text{Rad}_X|| \leq c_3 \ln (d_X + 1), \]

where c_3 is an absolute constant and $d_X = d(X, l_2^n) \leq \sqrt{n}$. Therefore, in particular,

\[||\text{Rad}_X|| \leq c_3 \ln (n + 1). \]

7. Using 6, we may write in Proposition 3 that

\[d(F, l_2^n) \leq \left[c \ln (d_X + 1) \right]^{1/(1 - \lambda)^2} \leq \left[c \ln (n + 1) \right]^{1/(1 - \lambda)^2}, \]

where c is a universal constant. We now use Proposition 3 and (5) consecutively many times starting with λ_1, obtaining a space F_1 (as in Proposition 3), $\dim F_1 = k_1 \geq \lambda_1^n$ with

\[d_1 = d(F_1, l_2^{k_1}) \leq \left[c \ln (n + 1) \right]^{1/(1 - \lambda_1)^2}. \]

For the second step we apply the same Proposition 3 to space F_1 (instead of X) with λ_2 and obtain a space F_2, $\dim F_2 = k_2 \geq (\lambda_2 \lambda_1)^n$ with

\[d_2 = d(F_2, l_2^{k_2}) \leq \left[c \ln (d_1 + 1) \right]^{1/(1 - \lambda_2)^2}, \]

and so on.

It remains to state how we choose $\lambda_t, t = 1, 2, \ldots$. The notations $\ln^{(1)} A$ will be used for the t-times iterated logarithm of A (so $\ln^{(2)} A = \ln \ln A$) if for any $k \leq t$, the k-iterated logarithm of A is at least 2 and just 2 in the opposite case. With such an agreement we write, in (5), $\ln^{(1)} d_X (= \ln d_X)$ and $\ln^{(1)} n$ instead of $\ln(d_X + 1)$ and $\ln(n + 1)$.

For every $t \geq 1$, take $\lambda_t = 1 - \sqrt{6}/\ln^{(t+1)} n$, and we obtain, by using Proposition 3 t-times, a space F_t,

\[\dim F_t = k_t \geq \prod_{i=1}^t \left(1 - \sqrt{6}/\ln^{(t+1)} n \right)^2 n \]
and
\[d_t = d(F_t, l^2_{F_t}) \leq (c \ln d_{t-1})^{(\ln^{(t+1)} n)^2/6}. \]

We assume now that \(c < \ln d_{t-1} \), and we just stop our iteration in the opposite case, \(d_{t-1} \leq e^c \). Therefore,
\[d_t \leq (\ln d_{t-1})^{(\ln^{(t+1)} n)^2/3} \]

and
\[\ln d_t \leq \left((\ln^{(t+1)} n)^2/3 \right) \ln^{(2)} d_{t-1}. \]

Now,
\[\ln d_1 \leq \left(\ln^{(2)} n \right)^3/3 \leq \left(\ln^{(2)} n \right)^3, \quad \ln d_2 \leq \left(\ln^{(3)} n \right)^3, \]

and, in general,
\[\ln d_t \leq \left(\ln^{(t+1)} n \right)^3. \]

Now take \(d \) from the statement of Theorem 1. By Remark 1 we may assume \(d \) large enough; so let \(d > e^c \) and \(a = (\ln \ln d)/3 > \sqrt{6} \cdot 2 \). We stop our iteration procedure for \(r \) such that for the last time, \(\ln^{(r+1)} n \geq a \) (i.e., \(e^a > \ln^{(r+1)} n \)), which implies, by (8) and (7), \(d_t \leq \exp(e^{3a}) = d \). Of course, the iteration could have stopped before because of the first condition if, for some \(j < t \), \(d_j \leq e^c < d \). Therefore, in both cases we have found a space \(F_{j+1} \leq F_{j+2} \leq \cdots \leq F_t \leq F_{t+1} \) such that \(d(F_{j+1}, l^2_{F_{j+1}}) \leq d \). It remains to estimate \(\dim F_t = k_t \), using (6). On the last step of the iteration we have \(\ln^{(r+1)} n \geq a \) (\(> 2\sqrt{6} \)), and, therefore, \(\lambda_t \geq (1 - \sqrt{6}/a) \), \(\lambda_{t-1} \geq (1 - \sqrt{6}/e^a) \), and so on; so it is enough to estimate from below the infinite product
\[(1 - \sqrt{6}/a) \cdot (1 - \sqrt{6}/e^a) \cdot \cdots \]

\[\prod_{t=0}^{\infty} \left(1 - \sqrt{6}/a^{2^t} \right) = f(a) \to 1 \]

if \(a \to \infty \), and, therefore, we prove the principal part of Theorem 1. It is also clear that the main part of this product is the first term \(f(a) \approx 1 - \sqrt{6}/a = 1 - 3\sqrt{6}/\ln \ln d \).

Acknowledgement. This work was completed during my stay at the University Paris VI, and I thank this University and, especially, Professor G. Pisier for their hospitality.

Added in proof. I have now obtained the following better estimate for the function \(\lambda(d) \) in Theorem 1:
\[\lambda(d) \geq 1 - c \sqrt{\frac{\log d}{d}} \quad \text{for large } d. \]

References

DEPARTMENT OF MATHEMATICS, TEL AVIV UNIVERSITY, TEL AVIV, ISRAEL

Current address: IHES, 91 Bures sur Yvette, 91440, France